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Abstract

We consider the problem of increasing the expres-
sivity of probabilistic circuits by augmenting them
with the successful generative models of normaliz-
ing flows. To this effect, we theoretically establish
the requirement of decomposability for such com-
binations to retain tractability of the learned mod-
els. Our model, called Probabilistic Flow Circuits,
essentially extends circuits by allowing for normal-
izing flows at the leaves. Our empirical evaluation
clearly establishes the expressivity and tractability
of this new class of probabilistic circuits.

1 INTRODUCTION

Building flexible models for representing probability dis-
tributions has been a long standing goal in Al Driven by
the need for reliable decision making under uncertainty, the
early efforts in this direction were aimed towards build-
ing efficient models [Koller and Friedman, 2009] and al-
gorithms [Chow and Liu, 1968, Welch et al., 1995] that
enabled tractable probabilistic inference. Several tractable
generative models that described probability distributions
in the form of graphs were recently developed [Poon and
Domingos, 2011, Choi et al., 2020, Rahman et al., 2014,
Darwiche, 2003].

In particular, Choi et al. [2020] introduced Probabilistic Cir-
cuits (PCs) as a unified notion encompassing such models
that describe distributions in the form of computational
graphs such as cutset networks [Rahman et al., 2014],
arithmetic circuits [Darwiche, 2003] and sum-product net-
works [Poon and Domingos, 2011]. Several subsequent
works have shown how to learn (a subset of) PCs [Gens
and Pedro, 2013, Peharz et al., 2016, Trapp et al., 2019] and
have increased their flexibility [Molina et al., 2018, 2017],
reliability [Deratani Maud et al., 2018] as well as scalability
[Peharz et al., 2020b,a, Dang et al., 2022, Liu et al., 2023].

While tractable, these PCs are still less expressive than deep
generative neural models (DGMs) such as GANs [Goodfel-
low et al., 2014], VAEs [Kingma and Welling, 2014] and
Normalizing Flows (NFs) [Tabak and Turner, 2013, Papa-
makarios et al., 2021]. Among these, NFs have recently
gained attention due to their use of invertible functions that
enables maximum likelihood training, resulting in more sta-
ble models that avoid mode collapse and vanishing gradient
problems of deep generative models. While powerful, these
deep models are not efficient in performing inference tasks
that tractable models such as PCs are quite adept at.

So it is not surprising that combinations of PCs with DGMs
have been explored. Tan and Peharz [2019] explored the
integration of VAEs with PCs, while Trapp et al. [2020],
Yu et al. [2021] explored the integration of gaussian pro-
cesses with PCs. Along similar lines, Correia et al. [2023]
recently proposed building continuous mixtures of tractable
probabilistic models to improve their representational flexi-
bility. However, the added expressivity of PCs due to these
models came at the cost of their tractability. Integrating
new transformations within PCs was first explored in Sharir
and Shashua [2018], who proposed the addition of quotient
nodes to improve expressivity, while retaining tractability.
Most recently, Pevny et al. [2020] proposed the addition of
invertible transform nodes, representing normalizing flows.
They augmented PCs by placing invertible affine transfor-
mations arbitrarily within the circuit, and demonstrated its
added modeling flexibility. However, as we prove, this un-
derstanding of integrating flows with PCs is incomplete,
and does not guarantee tractability.

To establish tractability, we first define the notion of T-
decomposability that specifically considers the decomposi-
bility of transform nodes. Building upon this definition, we
then propose a method for integrating PCs with NFs by
defining a new class of circuits, called Probabilistic Flow
Circuits (PFC). These models follow a similar structure to
that of a PC by employing sum and product nodes in the
circuit while using NFs at the leaves. The advantage is that
since NFs allow for effectively modeling arbitrarily complex
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Figure 1: Modeling a 2D data distribution (bottom left) using a
PC (top left) and a PFC (top right). The red and blue marginal
plots show the distribution captured by the corresponding leaves
(L). The PFC, with its multi-modal leaf densities is able to better
model the data than the PC.

distributions, the resulting model enhances the modeling ca-
pabilities of a PC. As an example, consider the data shown
in Figure 1. Using a simple PC that learns a mixture of
four distributions, the depicted data distribution cannot be
modeled faithfully. However, our method that uses the same
structure can better model the data as it learns multimodal
distributions at the leaves. The additional advantage is that
the tractability of a PC is retained as the NFs are defined in
the leaves rather than in the inner nodes.

Overall, We make the following key contributions:

* We present the formalism for combining PCs and NFs
to develop probabilistic flow circuits that retain their
respective advantages of tractability and flexibility.

* We show that the existing combination that uses invert-
ible affine transformations breaks the decomposability
property, and that T-decomposability is a necessary
condition for retaining the tractability of PCs.

* We present a recommendation for a family of invertible
functions by employing linear rational splines at the
leaves of PCs.

¢ We demonstrate the efficacy and efficiency of the flow
circuits empirically in density estimation and sample
generation tasks using high-dimensional data.

We proceed as follows. We start off by reviewing proba-
bilistic circuits and normalizing flows. Then we introduce
T-decomposability and the probabilistic flow circuits. Be-
fore concluding, we touch upon our empirical evaluation.

2 BACKGROUND

Notation. We use X to denote a random variable, = to de-
note its value, bold letters to denote sets of random variables
ie, X = {X;}% |, z to denote an assignment of values to
all variables in X, val(X) to denote the set of all values
that X can take, and val(X) to denote the cartesian prod-
uct val(X;) x val(Xs)...val(Xy). As normalizing flows
are most commonly defined over continuous spaces, we
will consider only continuous random variables. With mild
overload of notation, we interchangeably refer to X as a d-
dimensional real random vector and ¢ € RY = (z1,...,24)
the value it takes. We denote by X 4 C X = { X };c4 for
A C {i}d_, the subset of random variables in X contained
in A. Equivalently, we denote by IT4(x) € RI4! the pro-
jection of the @ on A, ie., x4 = IMa(x) = (x;)ica is
the | A|—dimensional vector obtained by indexing x along
the dimensions contained in A. We use P(X) to denote a
probability distribution over X and p(x) its density.

Tractable Probabilistic Models: A generative model 6
that approximates a probability distribution P(X) is said to
be tractable on a given probabilistic inference task ¢, where
Q = f(Py(X)), if Q can be computed in time polynomial
in the size of the model. Tractability is thus a spectrum
governed by both the nature of the inference tasks (or f)
and properties of 6.

Probabilistic Inference Tasks: Utilizing a probabilistic
generative model (Py(X)) to make decisions in real life
often requires querying the model to infer properties of
the underlying distribution or extracting the uncertainty as-
sociated with events defined by its random variables. We
elaborate on the prevalent types of inference queries below.

Let X., Xy € X suchthat X = X . UX and X .NX, =
(). First, given a full assignment of values x to all variables
in X, computing the density pg(X = x) is called evidential
inference. Second, we might be interested in computing the
marginal distribution over a subset of variables X ., for in-
stance, pg(X. = x.) = que‘,al(xq)pg(Xe =z, X, =
x4) which is known as marginal inference. Third, we might
be interested in computing conditional distributions, for e.g.,

Xe=we, X=xq)
X = X = — PG( e es<hgq q
pG( ¢ e| a q) zgeval(xe)p9(X8=m67Xq=mQ)

which is known as conditional inference. Finally, given a
partial assignment x. to a set of variables X ., finding the
most probable assignment for the remaining variables X,

le. xg = argmax,: cx po(Xy = ac;|Xe = x.) is max-
imum a posteriori or MAP inference. Note that while we
consider only the above queries, complex tasks such as com-
puting marginal-MAP, moments, etc. exist and we refer to
Choi et al. [2020] for an elaborate review.

Probabilistic Circuits (PCs): PCs are tractable proba-
bilistic models, defined as rooted directed acyclic graphs
(DAGs), in which leaf nodes represent univariate probabil-



ity distributions and non-terminal nodes represent either
a mixture (or states of an observed variable in case of a
deterministic circuit) or an independence relation of their
children. More formally:

Definition 1. A probabilistic circuit (PC or simply C) is
a computational graph that is composed of three types of
nodes - sum nodes S, product nodes P and leaf nodes L.
Each node in the graph computes a non-negative function
over a set of variables 1) C {X;}%_,, which is defined as
its scope. Taken together, C encodes a probability distribu-
tion over X, the probability density (or mass) function of
which is given by the value of its root node and is defined
recursively as follows:

1. The value of a sum node(S) is equal to a convex com-
bination of the values of its children, i.e. S(x) =
ZN,;ech(S) wiNi(x); 0 <w; < land )y, w; =1

2. The value of a product node (P) is equal to the
product of the values of its children, i.e., P(x) =
HNiech(P) Ni(w¢Ni>

3. The leaf node L represents a simple probability distribu-
tion over its scope with an analytically computable leaf
density, such as a Gaussian. For a given x the value of
the leaf node equals the pdf (or pmf if discrete) of (x)
w.r.t the leaf distribution.

where N represents an arbitrary node, ch(IN) refer to the
children of N in the graph and 1N refer to the scope of .

To ensure that C encodes a valid distribution and enables
tractability for inference tasks, there are certain structural
properties that it often needs to satisfy:

P. 1 (Smoothness). C is smooth if its sum nodes are defined
over children having the same scope, i.e. VS € C,9(IN;) =
¥(N;)VN;, Nj € ch(S).

P. 2 (Decomposability). C is decomposable if its product
nodes are defined over children having disjoint scopes, i.e.,
VP € C, and VN;, Nj € ch(P), (N;) N(N;) = 0.

Smoothness and decomposability are necessary and suffi-
cient conditions for C to enable tractability for marginal and
conditional inference [Vergari et al., 2021]. Circuits that
support MAP inference are additionally required to satisfy
determinism.

P. 3 (Determinism). C is deterministic if for all the
sum nodes, the value of only one of the its children is
non zero for a given fully observed input, x i.e., VS €

C, ZNiEch(S) INi@)>0 = L.

Normalizing Flows (NFs): NFs constitute a class of deep-
generative models that build flexible probability distribu-
tions over continuous spaces by utilizing the change of vari-
ables formula and invertible transformations. Specifically,
a normalizing flow transforms a complex distribution px

defined over € R? into a simple base distribution pz,
through a bijective transformation g, such that z = g(x).
Further, g should satisfy that both g and g~! are continuous
and differentiable, a.k.a diffeomorphism. The probability
density in the X space is given by the change of variables
formula as:

px () = pz(2)|det Jg| )

pz(z) is assumed to be a simple distribution such as a
Gaussian and | det J,| denotes the absolute value of the de-
terminant of the Jacobian of the transformation g evaluated
at . Sampling from the distribution p, can be achieved
by sampling 2* ~ p, and applying the transformation g1,
ie.x* = g~1(z*). Since diffeomorphisms are closed under
compositions, we can "flow" the base distribution through
multiple compositions of invertible transformations to attain
higher representational flexibility. Building efficient (neu-
ral) parameterizations for the invertible transformations (g)
with efficiently computable Jacobian determinants is the key
research question for normalizing flows.

3 INTEGRATION OF PCs AND FLOWS

A key factor that distinguishes NFs from other deep models
is that they support exact density evaluation i.e. NFs are
tractable models for evidential inference tasks. On the other
hand, PCs are less expressive than NFs but tractable for more
inference tasks under appropriate structural constraints.

One way to combine NFs and PCs would be to integrate
the invertible transformations of flows within PCs, which
was first explored by Pevny et al. [2020]. They called the
resulting model a sum product transform network (SPTN).

Definition 2. A SPTN is a PC obtained by augmenting C
with an additional node type, called transform node. Each
transform node (T) has a single child N' and can be in-
troduced arbitrarily over any node in C, and 1 = Y.
The value of a transform node is defined as, T (N (x)) =
N(g(x))| det J,|, where g denotes a diffeomorphic trans-
formation associated with T and | det J4| denotes the abso-
lute value of the determinant of the Jacobian of g.

Pevny et al. [2020] proposed to model the transformations
g associated with 7 as invertible affine transformations. To
enable tractability, they considered PCs that are smooth and
decomposable, with Gaussian distributions at the leaves,
and argued that the addition of transform nodes maintained
the properties. They reasoned that Gaussian distributions
are closed under product operations and affine transforma-
tions, i.e. the product of two Gaussians is a Gaussian and an
affine transformed Gaussian is a Gaussian, and hence in the
induced tree view [Choi et al., 2020] of a PC, the addition
of transform nodes does not introduce any change.

Though it appears intuitive, we argue that this construc-
tion is incomplete and can result in violating the structural



properties of the PC. We formalize this issue first before
discussing the solution to overcome it.

Lemma 1. A SPTN with invertible affine transformations,
as constructed by Def. 2, can violate the decomposability
property of a PC and is thus not guaranteed to be a tractable
model for marginal and conditional inference.

Proof. Consider an arbitrary section of an SPTN comprising
a sum node S, product nodes {PJZ le, a transform node
T as shown in the figure above.

We will show that the transform node causes the scope of
the children of P? to overlap, thus violating the decompos-
ability property. Let g; denote the invertible affine transfor-
mation associated with 7. Let €2 be the scope of 77, i.e
v = Q = Psi = PpiVj € (i}, and z € RI¥l =
(w1,22,...,2))). Fory C QletIly(x) € RI?! denote the
projection of the « on ¥, i.e., xy = Iy (x) = (z;)icy is
the |1)|—dimensional vector obtained by indexing « along
the dimensions contained in 1. We have,

T/(S! (@) = §(g (@) det T,

K
= Z ij;(gi(:c)ﬂ det J i

Jj=1
K R ) )

= w; | [[ N My, (o' (2))) | [ det Ty
j: J

1 k=1

Let zi¥ denote the input to N/*. Thus, for g'(z) =
Wi(z) + bt, we have

2 =Ty, (6(@) = o, (Wie) +67)
1€2]

= (Z Wﬁnl‘rl + b7")m€7/)/\/@k
=1 !

where we use the notation z = (z,,)7_; for an n-
dimensional vector z € R™. Clearly, each child {\V/*},
of 77;: computes a function over € R/’ and thus have
overlapping scopes, = P} is not decomposable —-

the SPTN is not decomposable. O

Note that while we showed that SPTNs with affine transfor-
mations violate decomposability, this is true for any invert-
ible transformation y = g(a) that computes each dimension
y; of y as some function of . Thus we need to define further
structural properties when transform nodes are introduced
to a PC to maintain its decomposability.

A close look at the proof for Lemma 1 tells us that we
can overcome this issue, if 7 was constrained in a man-
ner such that 7 (P(z)) independently transforms the sub-
set of variables involved in the scope of the children of
‘P. We formalize this notion as a property, which we call
T-decomposability.

Definition 3. Lerxz ¢ R, g: R — Réandy = g(x). We
call g to be decomposable w.r.t a collection () of disjoint
subsets of {1,...,d}, if y,, L xy, Vi, 0; € Qi # 4,
where y,, € Rl denotes the vector obtained by indexing
y along the dimensions contained in . We use y,,, 1 @,

to imply that gi‘; = 0Va € 9;,b € 9, i.e, it transforms

the sets of dimensions contained in §) independently, i.e.
Yy, = G (Typ,), where gy, RI¥il — RI¥il,

P. 4 (t-decomposability). A sum product transform net-
work Cspa is T-decomposable iff all of its transform
nodes are t-decomposable. A transform node (T) is T-
decomposable if, when defined over a decomposable product
node P, the transformation g associated with T is decom-
posable w.r.t the collection of the scopes of children of P.

Lemma 2. T-decomposability is a necessary condition for
a SPTN to be decomposable.

The proof is a generalization of Lemma 1 and is presented
in the appendix. Since decomposability is a necessary con-
dition for a PC to be tractable over marginal and conditional
queries, lemma 2 implies that T-decomposability is a neces-
sary condition for a SPTN to be tractable w.r.t conditional
and marginal inference tasks. We know that all element-
wise transformations are, by definition, T-decomposable.
But how does T-decomposability affect the expressiveness
of Csp7a ? The following theorem provides some insight.

Theorem 1. A t-decompasable SPTN is equivalent to a
PC comprising sum nodes and product nodes retaining the
same graph structure, but with all transform nodes from
the root to each leaf now pushed down as a composition of
transformations (i.e. a normalizing flow) defined just over
the corresponding leaf nodes.

Proof. Let Csp7a be T-decomposable sum product trans-
form network, and S,P,7,L € Cspya denote a sum
node, product node, transform node, and leaf node respec-
tively. For any arbitrary node V', we will show that defining
transformations over A reduces to transformations over the
children of \V.



Case 1: When N/ = S, we have,
T(S(x)) = S(g(x))|det Jy|
=Y wNigle)det g,

Ni€ch(S)

= Y wTWNi@))

Ni€ch(S)
Case 2: When N = P, we have,

T(P(x)) = 7?(9(93)” det Jg| .
| I Ml @) | 1det g,
_NiECh(P) _
= | I Nilguw, @on,) | | det ]
_NiECh(P) i

Since g is decomposable w.r.t the collection (£2) of scopes
of children of P, the Jacobian of g is a block diago-
nal matrix, each block corresponding to the jacobian of
the independent transformations, J, " for ¢; € Q. Thus,

[det Jg| = [ [detJ,, | Hence,
Ni€ch(P) K
TP@) = I [Mlgow, @on))ldet gy, ||
NLECh('P)
= I 7on Wil@))
./V'iech(P)

Case 3: When ' = T~1, let us denote by N~ the child
node of 7°~!. We have,

THT YN L (@) = THN (gL (@))] det J,ii]
= N g (g ) et Ty | det
= N1 (g(z))| det J5|, where g = g* * o ¢*
~ TN @)

i.e. 7% with transformation g* and 7~ with transformation
¢'~! can be combined into a single transform node 7~ with
an associated transformation § = ¢*~! o g°. This follows
from the fact that compositions of invertible transformations
are invertible and the jacobian of composition of two trans-
formations can be written as the product of the jacobians of

the individual transformations.

Thus recursively pushing down transformations along the
path from the root to each leaf node, we end up with compo-
sitions of transformations defined only over the leaf nodes.
Let /; be the number of transform nodes along the path
from the root to the leaf £ and let 7 denote the com-
positions of 7' o 72...T%. Cspya has now reduced
to containing only sum nodes, product nodes and a trans-
formed leaf node, where the new leaf node £ is defined as:

L(z) = T(L(z)) = L(g"0g%0. . .og" (x)) T]'_

Case 1 Case 2 Case 3

-
8589535

Thus, each leaf node now becomes a normalizing flow. [

Each leaf in a PC typically encodes a tractable distribution
over a single random variable. Thus, though it is intuitive
to think of integrating NFs with PCs by the introduction of
transform nodes arbitrarily in the circuit as done in Pevny
et al. [2020], Thm. 2 shows that, when ensuring tractability,
such circuits reduce to a PC with a new type of leaf node.

Definition 4 (Probabilistic Flow Circuit). A probabilistic
flow circuit (PFC) is a computational graph that defines
a probability distribution over a set of continuous random
variables (X ). It comprises of three types of nodes: (1) Sum
nodes S that computes a convex combination of the values
of its children. (2) Product nodes P that computes a product
of the values of its children. (3) Leaf nodes (L ) defined as
normalizing flows over individual features X; € X.

NFs are expressive deep models that effectively model ar-
bitrarily complex probability distributions. Thus, a PFC
augments the expressivity of PCs by allowing complex dis-
tributions to be modeled at the leaf nodes. It also retains the
tractability of PCs as the transformations are restricted only
to the leaves. However does integrating any invertible trans-
formation at the leaf provide the same added expressivity?

To understand this, consider the invertible affine transfor-
mations that were proposed by Pevny et al. [2020]. We
know that compositions of affine transformations can be
reduced to a single affine transformation. We also know that
an affine transformed Gaussian is still a Gaussian. Thus, the
addition of invertible affine transformations at leaf nodes,
still only gives us the ability to model Gaussian distributions
at the leaf, and does not seem to help improve expressiv-
ity. Now, with the framework for integrating NFs with PCs
constructed, we define expressive flow transformations.

Probabilistic Flow Circuits via Linear Rational Splines
The requirement at the leaf node for a PFC is that it should
enable tractable computation of probability densities. Any



diffeomorphic transformation enables computing the exact
density using the change of variables formula. Thus, any
expressive normalizing flow architecture can, in principle,
be used to implement a probabilistic flow circuit.

However, the nature of inference tasks that we need tractabil-
ity for can demand additional characteristics that are de-
sirable for the diffeomorphisms defined at the leaves. For
example, in order to support MAP inference, deterministic
PCs require that the argmax over the leaf density is easily
computable. In PCs, since leaf distributions over continu-
ous variables are typically parameterized as Gaussians, the
argmax (or the mode of the distribution) corresponds to the
mean. However, by defining distributions using normaliz-
ing flows, the leaf nodes in a PFC now model arbitrarily
complex probability distributions. Since they are no longer
restricted to be uni-modal, computing the argmax over this
distribution becomes a challenging task. Thus, one design
principle for probabilistic flow circuits could be defining
diffeomorphisms that support easy computation of modes,
without imposing significant limitations on its expressivity.

We propose to parameterize g using a family of invertible
piecewise functions, known as linear rational splines (LRS).
Spline-based normalizing flows [Dolatabadi et al., 2020,
Durkan et al., 2019] have attracted much research interest
in recent years and are among the state-of-the-art. We will
adapt the computationally efficient LRS transformations
defined by Dolatabadi et al. [2020] to define expressive leaf
distributions with easily computable modes.

Definition 5. An invertible linear rational spline transfor-
mation is a piecewise function that divides the input space
(X)) into bins (or intervals) and defines a monotonic ra-
tional function of the form y = % within each bin,
such that they are knotted together at the boundaries so as
to define a differentiable function. Formally, given a set of
monotonically increasing points {(z*, y*)}_ | known as
knots, derivatives {d* > 0}_ at the knots, and parame-
ters {\F € (0,1)}_,, the LRS transformation within each
bin, say for x € [x*, 2¥*1] is defined as:

k
o
Y = girs(@), where ¢ = M, and

Wy Ak — W y™
T 0< <A

glrs(¢) =
wmym(17¢)+wk+lyk+l(‘ls*)‘k) )\k S ¢ S 1

W (=) Fw T (G-

Given the knots and the derivatives, the parameters
wk, w™, wF*t \F and 4™ are constructed in such a manner
[Dolatabadi et al., 2020] that the overall function defined is
differentiable everywhere. The width and height of each bin,
the derivatives at the knots, and A are defined as learnable
parameters for an LRS flow. The form for the analytical

inverse of g;,.s and its jacobian are given in Dolatabadi et al.

[2020]. We will use a Student’s-t distribution with 3 degrees
of freedom as the base distribution for our flow, as the form
for its density function simplifies the analysis when used
with g;,-s. We summarize the tractability of our model below
before we present empirical results.

Lemma 3. A PFC (Cx) with leaf distributions defined us-
ing girs transformations and a Student’s-t distribution with
v = 3 as the base distribution is a tractable model for (a)
evidential inference if Cx is smooth, (b) Marginal and condi-
tional inference if Cx is smooth and decomposable, (c) MAP
inference if Cx is smooth, decomposable, and deterministic.

Proof. Deferred to the supplementary. L

4 EXPERIMENTS & RESULTS

We experimentally validated the efficacy of probabilistic
flow circuits in modeling a wide range of data distributions.
We used einsum networks Peharz et al. [2020a] with gaus-
sian leaves to parameterize PCs. Einsum networks vectorize
the leaf distributions in a PC and implement the sum and
product operations using a monolithic einsum-operation de-
fined over a probability tensor. The balanced tree structure of
its computational graph allows computing the leaf densities
in parallel and processing it through stacked einsum-layers,
similar to transforming an input through a deep neural net-
work. We instantiated our PFC by integrating a linear ratio-
nal spline flow as the input layer within einsum networks.
To enable parallel computation of all the leaf densities, we
implemented our input layer as a single conditional NF,
conditioned on the index of the leaf distribution. We will
refer to the base PC as EinsumNet and our probabilistic
flow circuits as EinsumNet+LRS. As our objective is to
evaluate the added expressivity brought in by the flexible
leaf distributions, we used the same circuit structure for
both EinsumNet and EinsumNet+LRS, and compared their
performances on a multitude of datasets. The two key pa-
rameters constraining the structure and expressivity of an
einsum network are the number of vector components (k)
and the number of replicas (r) (see Peharz et al. [2020a]
for more details). We used £ = r» = 10 for our 3D data
experiments and k = r = 20 for our experiments on higher
dimensional data. As einsum networks are differentiable
like neural networks, we used end-to-end backpropagation
and trained all our models using an Adam optimizer, with
a learning rate of 1le — 3. We defer further implementation
details to the supplementary. Our code is implemented us-
ing pytorch and pyro [Bingham et al., 2019], adapted from
[Peharz et al., 2020a] and is public'.

We aim to answer the following questions empirically:

"https://github.com/sahilsid/probabilistic-flow-circuits
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Figure 2: Visualizations of the 6 3D data distributions over complex manifolds considered in this work.
. Disjoint- Interlocked- Twisted- Bent-
Helix Knotted Circles Circles Eight Lissajous
EinsumNet —294+024 -523+007 -1.714+0.19 -2.88+0.07 -3.02+£0.24 —3.02+0.06
EinsumNet + Affine —2.47+£0.09 —-5.18+0.11 —-1.18+0.06 —-2.52+£0.06 —-2.79+£0.07 —-2.69+0.05
EinsumNet + LRS —-1.04£0.02 —-4.09+£0.03 —-0.81+0.03 —-244+0.02 -243+£0.01 —-2.53+0.02

Table 1: Performance Evaluation of - (a) Einsum Network (b) Einsum Network + Affine, and (c) Einsum Network + LRS on the 3D
datasets, in terms of mean test log-likelihood (), = the standard deviation across 3 trials.
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Figure 3: Learning curves of - (a) EinsumNet (b) EinsumNet +
Affine, and (c) EinsumNet + LRS on the 3D datasets, in terms of
mean validation log-likelihood across training epochs. The shaded
regions depict the standard deviation across 3 trials.

Q1 Do probabilistic flow circuits provide more accurate
density estimates for complex distributions?

Q2 If so, are the inference tasks still tractable with these
models while generating better quality samples?

Q3 Can we expect this added flexibility to hold in general,
or is it closely coupled with the expressivity of the
underlying PC ?

4.1 DENSITY ESTIMATION

3D Manifold Data. We first considered 6 data distribu-
tions over complex 3D manifolds, adapted from Sidheekh
et al. [2022]. These data distributions are easy to visual-
ize (see Fig. 2), being in a low dimensional space, but also
challenging to model, owing to their complex manifold
structure. They are thus useful distributions to evaluate and
compare generative models. We utilized these data distribu-
tions to empirically validate (a) the performance improve-
ment achieved by having flows as leaf distributions and
(b) the better expressivity offered by linear rational spline

transformations over the invertible affine transformations
proposed in Pevny et al. [2020]. We generated 20, 000 data
points for each of the 6 3D datasets, 10, 000 of which we
used for training and 5, 000 each for validation and testing.
We trained three models: (a) EinsumNet, (b) EinsumNet +
Affine, and (c¢) EinsumNet + LRS on each dataset, where
EinsumNet + Affine refers to the probabilistic flow circuit
obtained by integrating invertible affine transformations as
the leaf flow. To ensure invertibility, we implemented the
affine transformations in their SVD decomposed form, as
proposed in Pevny et al. [2020], utilizing the householder
parameterization for generating unitary matrices.

Fig. 3 shows the validation log-likelihood achieved by each
model across the training epochs on two 3D datasets. As one
can see, EinsumNet + Affine performs similar to EinsumNet
in many cases or slightly better. This is expected as the affine
transformed gaussian leaf distributions are still gaussians.
EinsumNet + LRS on the other hand, not only achieves
significantly better performance than both EinsumNet and
EinsumNet + Affine, but it is able to do so much faster.
Similar learning curves on the other 4 datasets are provided
in the supplementary. Tab. 1 provides further quantitative
evidence in terms of the test log-likelihood of each of the
three models on the 3D datasets, thus validating the added
flexibility of EinsumNet + LRS.

High dimensional data. Having established the utility
of probabilistic flow circuits for modeling 3D data distri-
butions, we now proceed to study how the expressivity
scales when learning data distributions in higher dimen-
sional spaces. We considered 2 image datasets - MNIST
[Deng, 2012], Fashion-MNIST [Xiao et al., 2017] and 4
UCT tabular datasets commonly used to evaluate density es-
timation in the normalizing flow literature. We followed the
preprocessing done in Papamakarios et al. [2017] for each of



Table 2: Performance Evaluation of - (a) Einsum Network and (b) Einsum Network + LRS on the tabular & image datasets, in terms of

POWER GAS MINIBOONE HEPMASS MNIST Fashion-MNIST
MADE —-3.08+0.03 3.56+0.04 —15.59+0.50 —20.984+0.02 —1380.8+4.8 -
Real NVP —-0.02+0.01 4.78+1.80 —-13.55+0.49 —-19.62+0.02 —-1323.2+6.6 -
MAF 0.14+£0.01 9.07+£0.02 -11.75£044 -17.70£0.02 —-1300.5£1.7 -
EinsumNet 0.20£0.01 3.57+0.08 —-35.93£0.06 —-22.79+£0.05 —1015.1+£0.9 649.1£0.3
Einsum+LRS 0.36 £0.01 4.79+0.04 —-3421£0.01 —-2246+£0.01 —-9594+14 655.6 £ 0.6

mean test log-likelihood (), £ the standard deviation across 3 trials.
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Figure 4: Qualitative Evaluation of samples generated by Ein-
sumNet and EinsumNet + LRS on the MNIST dataset.

these datasets. We trained the two models - EinsumNet and
EinsumNet+LRS for 200 epochs over the tabular datasets
and 50 epochs over the image datasets. Tab. 2 reports the
mean test log-likelihood achieved by both models on these
datasets. One can clearly see EinsumNet+LRS consistently
achieves better performance as compared to EinsumNet on
all the 6 datasets. We also analyzed how these tractable mod-
els compare against deep models that are expressive but not
quite tractable, in Tab. 2 (values taken from Papamakarios
et al. [2017]). Specifically, we considered MADE Germain
et al. [2015], which is a deep autoregressive generative
model, and two classic normalizing flow models, ReaINVP
Dinh et al. [2017] and MAF Papamakarios et al. [2017]. In-
terestingly, EinsumNet+LRS achieves similar performance
as RealN'VP on the GAS dataset and even performs better
than the deep models on the POWER and MNIST datasets.
We would like to add that even though these deep models
may not be the most state of the art, they are still models
that trade off tractability for expressivity. These results thus
suggest that integrating NFs as leaf distributions within PCs,
can help achieve better of both worlds and bridge the gap
between tractable and expressive models.

4.2 SAMPLE GENERATION

The ability to sample new data points from the underly-
ing distribution is one of the key desirable features of any
generative model. To understand how the integration of
flows affects the quality of sample generation, we show
samples generated randomly from an EinsumNet and Ein-
sumNet+LRS trained on the MNIST dataset in Fig. 4. As

(a) MNIST

(b) Fashion-MNIST

(c) Helix

Figure 5: Generating samples from conditional distributions
using EinsumNet+LRS.

one can see, EinsumNet+LRS is able to generate samples
of higher fidelity than EinsumNet. Further, as probabilis-
tic flow circuits are tractable models, one can utilize their
tractability to gain better control over the data generation
process. This can be helpful in many real world scenarios,
for example in the case of missing data or generating data
from regions having certain properties. For e.g., in Fig. 5 (a)
and (b) we occlude the top half of images taken from MNIST
and Fashion-MNIST datasets, and use an EinsumNet+LRS
to generate samples from the conditional distribution over
the occluded pixels given the non-occluded pixels. Similarly
in Fig. 5 (¢) we used an EinsumNet+LRS trained on the
3D Helix dataset to generate datapoints having the property
that their projection to the XY plane equals the black arc
plotted in the Figure. Note that due to the lack of tractability,
controlled sample generation like these are not possible for
other deep generative models like GANs, VAEs or NFs.

4.3 ABLATION STUDY

We also conducted ablation experiments to study how the
expressivity of a probabilistic flow circuit varies when the
underlying PC is made more complex. To this end, we con-
sidered K, = {1,2,4,8,16,32} and trained EinsumNet
and EinsumNet+LRS on the MNIST dataset by setting the
structure parameters k = r = K for each K € K.

The test log-likelihood of the models for each parameter
setting is shown in Fig. 6. We observe that irrespective of the
complexity of the underlying PC, the integration of flows
helps better model the data. EinsumNet+LRS performs con-
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siderably well even when K = 1. This suggests that the
expressivity of a probabilistic flow circuit is not tightly cou-
pled with the complexity of the PC.

S SUMMARY & FUTURE WORK

We presented a theoretically grounded approach to construct
deep and tractable generative models using probabilistic cir-
cuits and normalizing flows. We empirically validated its
added expressivity and tractability in modeling complex
data distributions. In many real-world scenarios, tractability
might be of interest only for a subset of random variables.
In such cases, defining multivariate leaf flows over the re-
maining variables can help further the expressivity while
retaining the tractability needed for the task, which we leave
for future work. Our work thus lays the formalisms and
foundations that can enable seamless interpolation on the
tractability-expressivity spectrum. It also paves the way
towards compositional learning, where hybrid data distribu-
tions modeled via normalizing flows can now be integrated
as leaves in a unified probabilistic circuit.
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In this supplementary material, we furnish further details
pertaining to the theory and implementation that was left
out in the main paper due to space constraints.

1 THEORETICAL RESULTS

Lemma 2. t-decomposability is a necessary condition for
a SPTN to be decomposable.

Proof. Let Cspra be a decomposable sum-product trans-
form the network. = VP € Csprar, P is decompos-
able = VN, N; € ch(P),i # j,Yn, Ny, = 0.
Now, let T € Csp7a be a transform node ( and g be its
associated transformation) that is not T-decomposable. i.e.
when defined over a product node P, there exists at least
one pair ¥, Y1 € {Yn; tN,ech(P)s i # 4, such that for
x € RI7l and Y= g(m),yw, £ :cwj/ = Hllli/ (y) =
f (w%' ) for some function f. iFhus, we have,

T(P(x)) = P(g(x))| det J,|
= I Ny, (9(x)))] det |

N;ech(P)

Thus the child Vs of P computes a function over Ty, =
YN, DYn, = Py, MYy, # O = Pisnotdecom-
poslable, thi;s resulting 1n a coiltradiction. Thus, for a sum
product transform network Csp7 s to be decomposable, all
transform nodes must be T-decomposable.

O

Lemma 3. A PFC (Cx) with leaf distributions defined us-
ing g5 transformations and a Student’s-t distribution with
v = 3 as the base distribution is a tractable model for (a)
evidential inference if Cx is smooth, (b) Marginal and condi-
tional inference if Cx is smooth and decomposable, (c) MAP
inference if Cr is smooth, decomposable, and deterministic.

Proof. The tractability of evidential, marginal and condi-
tional inference for C follows trivially from the fact that C x
is a probabilistic circuit and hence inherits the tractability
offered by the circuit properties of a PC under the structural
constraints of smoothness an decomposability. We elaborate
this further below.

(a) Evidential inference: In order to tractably perform evi-
dential inference, Cr requires that the leaf nodes compute
a valid probability density over its scope. A normalizing
flow supports exact density evaluation using the change of
variables formula and hence enables tractable evidential
inference. Smoothness of Cx further ensures that its sum
nodes compute valid mixture densities. However, note that
smoothness is not a necessary condition, as a non smooth
PC can, in polynomial time, be converted to a smooth PC
(Choi et al|[2020]).

(b) Marginal and Conditional inference: For a smooth
and decomposable C r, marginalizing out a variable X; from
its modeled density reduces to marginalizing out the corre-
sponding leaf distribution. This is because marginalization
of X; involves integrating the model density over val(X;),
and as proved in [Choi et al.| [2020]], the integral over the
circuit reduces to integrals over the leaf distributions having
X in their scope, when the circuit is smooth and decompos-
able. Note that each leaf nodes in C+ represents a probability
distribution over a single variable and marginalizing it out
is equivalent to setting the corresponding leaf density to 1.
Thus, Cr supports tractable marginal inference. Also, the
tractability of conditional inference naturally follows from
the tractability of evidential and marginal inference.

(b) MAP inference: Along the same lines, computation of
MAP queries for Cr reduces to computing argmax over leaf
densities if Cx is smooth, decomposable and determinis-
tic |(Choi et al.| [2020]. Thus, if we can compute the mode
of the distribution modeled by the leaf nodes, we can en-
sure tractability for MAP inference. For z € [z, 2], let
o = (;ﬁ:i), and let g denote the linear rational spline
transformation associated with the bin, which has the form

Accepted for the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023).


mailto:<sahil.sidheekh@utdallas.edu>?Subject=Your UAI 2023 paper

g(¢) = Zgig = Z;iig; Let S; denote a Student’s-t distri-
bution with 3 degrees of freedom. The pdf of a Student’s-t

distribution with v degrees of freedom is given by:

plz;v) = \/% (1+ x;)(”él)

Thus, we have the following form for the density modeled
at the leaf distributions,

p(z) = Su(g()1 22,
rrr— Sa@)1 52
crs (49 (o>
B \%TFF((Qé) +é (zgg) ] (r(¢)) 2
= Co [3r() + a(d)g(e)]

Where, C1,C5 are constants. Thus, we have logp(z) =
log Co — 2log(3r(¢) + q(¢)g(¢)). Now, log p(z) is maxi-
mized when f(¢) = 3r(¢) + q(¢)g(¢$) is minimized. Dif-
ferentiating and equating to zero, we have,

3r'(¢) + ¢'(#)g(d) + a(d)g'(¢) =0
= 3a2r(¢)® + a1q(¢)r(¢) + (b2a1 — azb1)q(¢) =0

Note that as ¢(¢), r(¢) are linear in ¢, the above equation
is quadratic in ¢. Thus, we can check if any of its real roots
lie within the interval [0, 1]. If it does, then the maximum
density within that bin is given by the density at the root.
If not, then the maximum occurs at either of the interval
boundaries. Thus, we can compute the maximum within
each bin analytically. The maximum density across all the
bins gives the mode of the distribution.

Note that the above analysis also extends to compositions
of LRS transformations as a composition of linear ratio-
nal functions is a linear rational function .i.e for g;(¢) =

a19+by — Gotdy
P and ga(¢) = caitds® WE have,

¢ (Z;iiﬁ;) +di
92(91(8)) = ardtbr

2 (m) + d
_(c1a1 +draz)¢ + c1by + diba
o (CQG/]_ + dg&g)(ﬁ + Cgbl + d2b2

is also a linear rational function. O

2 IMPLEMENTATION DETAILS

We implemented our code using pytorch, adapting from
Peharz et al.|[2020]. We used the Pyro probabilistic pro-
gramming language [Bingham et al.| [2019] package that

is built on top of pytorch to implement the linear rational
spline transformations. The hyper parameters defining the
structure of the PC in einsum networks [Peharz et al., [2020]]
are - the depth (D) of the circuit, the number of vector com-
ponents (K) (i.e. the no. of leaf distributions per variable
and the no. sum nodes in an einsum-layer) and the num-
ber of replica (R). We use the same PC architecture for
both the EinsumNet and EinsumNet+LRS. There are two
hyper parameters associated with the linear rational spline
transformation - the no. of of intervals (/), the bounds (B)
within which it is defined. Outside of [— B, B] the transfor-
mation is defined to be identity. For a dataset with n features,
we set depth D = max (1, |log,(n)]). We use end-to-end
backpropagation and train all our models using an Adam
optimizer, with a learning rate of 1le — 3. Further dataset
specific details are summarized below:

3D Manifold Data We sampled 20, 000 data points for
each of the 6 3D datasets, 10,000 of which we used for
training and 5, 000 each for validation and testing. We used
K = 10, R = 10 as the underlying PC structure for each
model on the 3D datasets. We used a single linear rational
spline transformation with I = 16, B = 20 at the leaves of
EinsumNet+LRS. We used a batch size of 100 and trained
all models for 200 epochs. The learning curves of the models
on the 3D datasets left out in the main paper is given in

Figure[T]

UCI Tabular Datasets We used K = 20, R = 20 as the un-
derlying PC structure for all models on the tabular datasets.
We used a single linear rational spline transformation with
I = 32, B = 8 at the leaves of EinsumNet+LRS. We used
a batch size of 200 for the GAS, MINIBOONE and HEP-
MASS datasets, and a batch size of 500 for the POWER
dataset. We trained all models for 200 epochs, early stopping
if there is no improvement in the validation performance
for over 5 epochs. The details regarding the no. of features,
and no. of datapoints within in each split of the 4 UCI tabu-
lar datasets considered can be found in|Papamakarios et al.
[2017]]. We also followed the same preprocessing for the
datasets as given by Papamakarios et al.|[2017].

Image Datasets We used the PD structure [Poon and Domin{
gos| 2011} [Peharz et all [2020] with A = [7,28] and
K = 20,R = 20 to define the underlying PC structure
for all the models on the two image datasets - MNIST
and Fashion-MNIST. We used two linear rational spline
transformations with I = 16, B = 16 at the leaves of Ein-
sumNet+LRS. We used a batch size of 100 and trained all
models for 50 epochs. As we consider continuous leaf dis-
tributions, we applied the logit transformations as done in
Papamakarios et al.|[2017] to make the data continuous.
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Figure 1: Learning curves of - (a) Einsum Network (b) Einsum Network + Affine transformations at the leaves and (c)
Einsum Network + LRS transformations at the leaves on the 3D datasets, in terms of average log-likelihood (higher the
better) on the validation set across training epochs. The shaded regions depict the standard deviation across 3 independent
trials. We can observe that Einsum Network + LRS achieves superior performance much faster than the other two models on

all datasets.

Figure 2: Controlled Sample Generation Using an EinsumNet+LRS trained on the Helix dataset. The tractability of
EinsumNet+LRS allows generating data with certain properties, for e.g. the second, third and fourth subfigures show data
generated such that its projection onto the XY plane is the black curve plotted.
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