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Abstract
Despite the accomplishments of Generative Ad-
versarial Networks (GANs) in modeling data dis-
tributions, training them remains a challenging
task. A contributing factor to this difficulty is
the non-intuitive nature of the GAN loss curves,
which necessitates a subjective evaluation of the
generated output to infer training progress. Re-
cently, motivated by game theory, duality gap has
been proposed as a domain agnostic measure to
monitor GAN training. However, it is restricted
to the setting when the GAN converges to a Nash
equilibrium. But GANs need not always con-
verge to a Nash equilibrium to model the data
distribution. In this work, we extend the notion
of duality gap to proximal duality gap that is ap-
plicable to the general context of training GANs
where Nash equilibria may not exist. We show
theoretically that the proximal duality gap is ca-
pable of monitoring the convergence of GANs
to a wider spectrum of equilibria that subsumes
Nash equilibria. We also theoretically establish
the relationship between the proximal duality gap
and the divergence between the real and generated
data distributions for different GAN formulations.
Our results provide new insights into the nature
of GAN convergence. Finally, we validate experi-
mentally the usefulness of proximal duality gap
for monitoring and influencing GAN training.

1. Introduction
Generative modeling is an important machine learning
paradigm, aiming to learn data distributions. The ability
to parametrically model the true underlying distribution of
real-world data from a given empirical distribution brings
with it the power to generate new and unseen instances.
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Generative adversarial network (GAN) is perhaps the most
popular and successful of innovations for learning data dis-
tributions. A GAN formulates the generative modeling
problem as a zero-sum game between two agents - a Dis-
criminator (D) and a Generator (G). The discriminator aims
to differentiate the fake samples produced by the generator
from samples belonging to the true data distribution. On the
other hand, the generator seeks to fool the discriminator by
learning a mapping from an input noise space to the data
space. The generator can also be viewed as performing
adversarial attacks on the discriminator, exploiting the infor-
mation leak through the discriminator and learning the real
data distribution as the game proceeds to an equilibrium.

Formally the GAN game is defined as :

min
θg∈ΘG

max
θd∈ΘD

V (Dθd , Gθg ), (1)

where the generator (parametrized by θg) and discrimina-
tor (parametrized by θd) are neural networks and V is the
objective function that the agents seek to optimize. Differ-
ent GAN formulations yield different expressions for V ,
each minimizing a unique divergence between the real and
generated data distributions. The classic GAN formulation
(Goodfellow et al., 2014) minimizes the JS divergence and
is defined by :

V = Ex∼Pr [log(D(x))] + Ex∼Pθg [log(1−D(x))]

where Pr denotes the real data distribution and Pθg denotes
the generated data distribution.

In any learning problem, the trajectory of the loss functions
should indicate the goodness of the trained model. How-
ever, such intuitive inferences cannot be drawn from the
loss curves of a GAN. This is because classical training of
a GAN involves alternate gradient descent optimization of
the objective function w.r.t the individual agents. Each opti-
mization step of an agent alters its adversary’s loss surface,
resulting in non-intuitive loss curves for both the agents
over time. Figure 1 shows discriminator and generator loss
curves for a GAN when it (a) converges and (b) diverges.
Ideally, losses should decrease during model convergence
and increase during divergence. However, we observe a
diminishing generator loss and an increasing discriminator
loss when the GAN converges. When it diverges, there is an
interplay between both the losses. These loss curves do not
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Figure 1. Loss curves throughout the training progress of WGAN
on the CIFAR-10 dataset.

give any insight into the gradual improvement or degrada-
tion in the GAN’s performance. Thus, monitoring GANs of-
ten requires a subjective evaluation of the generated output.
As a result, an exhaustive search over the architecture and
hyperparameter space to find the delicate balance demanded
by the GAN game becomes infeasible. This increases the
complexity of GAN training that is already challenging
due to the instabilities posed by the min-max gradient opti-
mization. Objective measures capable of quantifying GAN
training progress can reduce the training complexity.

Duality Gap (DG) (Grnarova et al., 2019) for GANs, moti-
vated by principles of game theory, is a recently proposed
objective measure for monitoring GAN training. The DG
quantifies a GAN configuration’s goodness in terms of the
agents’ ability to deviate from it in search of better optima.
When a GAN converges to a Nash equilibrium, no agent
can unilaterally deviate to find a better optima, and hence
the DG would be zero. The ability to quantify convergence
as well as the domain agnostic nature that requires no pre-
trained models nor labeled data, makes DG a potentially
powerful tool to monitor GAN training.

However, DG relies on the notion that GANs converge
to Nash equilibria. On the contrary, recent studies (Far-
nia & Ozdaglar, 2020; Berard et al., 2019) suggest that a
Nash equilibrium need not always exist for a GAN, espe-
cially when trained under regularized environments that
most modern GAN formulations employ. GANs can con-
verge to stable stationary points that are not Nash equilibria,
all the while producing realistic data samples with high fi-
delity. This weakens the foundation upon which the notion
of DG as a performance monitoring tool for GANs is built,
eliciting the following questions: Can GANs capture the
real data distribution even at non-Nash critical points? If so,
would the DG at such stationary points be zero? If not, how
do we monitor the GAN training in such situations?

In this work, we study the above questions by introducing

the notion of proximal duality gap for GANs that is gener-
alizable to scenarios where Nash equilibria may not exist.
Our work is motivated by the notion of proximal equilibria
for GANs that serves as a general concept for characterizing
GAN optimality (Farnia & Ozdaglar, 2020). We define the
DG in terms of the agents ability to optimize the proximal
GAN objective (see Eq. 9) and call it as the Proximal Dual-
ity Gap (DGλ). A proximal equilibrium for the GAN game
(Eq. 1) is a Nash equilibrium w.r.t the proximal objective.
Thus, whenever the GAN game attains a proximal equilib-
rium, DGλ will tend to zero, indicating model convergence.
As all Nash equilibria form a subset of proximal equilib-
ria, DGλ serves as a generic and robust measure that can
quantify GAN convergence in the wild.

Overall, we make the following contributions:

• We present an acute limitation of DG for monitoring
GAN training.

• We propose a theoretically grounded and robust ex-
tension - DGλ, that overcomes this limitation and is
also applicable to the broader context, when the GANs
converge to a non-Nash equilibrium.

• Using DGλ, we derive insights into the nature of GAN
convergence. Specifically, we study the relationship
between the quality of the learned data distribution and
the game equilibria. We show that for various GANs,
a configuration (θd, θg) where Pθg = Pr corresponds
to a Stackelberg equilibrium.

• We demonstrate through experiments, the proficiency
of DGλ for monitoring and influencing GAN training.

2. Related Work
Motivated by the non-inferrable nature of GAN loss curves,
developing extrinsic measures to monitor GAN training
has emerged as an active research area (Borji, 2018; Lucic
et al., 2018; Olsson et al., 2018). Existing measures such as
average log-likelihood (Goodfellow et al., 2014; Theis et al.,
2016), Inception Score (IS) (Salimans et al., 2016), Frechet
Inception Distance (FID) (Heusel et al., 2017) evaluate the
output of the GANs, but require pre-trained models. Further,
these measures, including the more recent ones such as
precision and recall (Sajjadi et al., 2018; Kynkäänniemi
et al., 2019), density and coverage (Tolstikhin et al., 2017;
Naeem et al., 2020) do not monitor the training progress nor
characterize the equilibria of the GAN game.

Duality Gap (DG) (Grnarova et al., 2019) is a recently pro-
posed domain agnostic and computationally feasible metric
for monitoring and evaluating GAN training. DG is zero
when GAN converges to a Nash equilibrium making it an
attractive metric for objectively monitoring the GAN train-
ing. However, DG has a fundamental limitation with its
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estimation process due to vanishing gradients. Adding per-
turbations to the GAN configuration before estimating the
duality gap (perturbed duality gap) helps to overcome the
vanishing gradients (Sidheekh et al., 2020). But both these
approaches assume the convergence of GANs to Nash equi-
librium, which may not always be the case especially for
high dimensional datasets (as we demonstrate in the next
section). Thus, limiting the applicability of DG and per-
turbed DG for monitoring the GAN training.

3. Background
3.1. A Brief Overview of GAN formulations

Classic GAN : The min-max objective in the classic GAN
(Goodfellow et al., 2014) formulation is :

Vc = Ex∼Pr [logD(x)] + Ex∼Pθg [log(1−D(x))] (2)

where the probabilistic discriminator D outputs the likeli-
hood of the input data point belonging to the real data dis-
tribution. The discriminator’s objective is to maximize the
log-likelihood to learn the conditional probability P (y|x),
where y = 0 and 1 indicate a fake and real data point respec-
tively. Minimizing the above objective w.r.t the generator
for the optimal discriminator is equivalent to minimizing
the Jenson Shannon divergence (JSD) between Pθg and Pr.

F-GAN: F-GAN (Nowozin et al., 2016) is the generaliza-
tion of the classic GAN to minimize arbitrary f -divergences
by incorporating an extension of the variational divergence
estimation framework (Nguyen et al., 2010). For a convex,
lower semi-continuous function f : R+ → R that satisfies
f(1) = 0, the f−divergence between distributions P , and Q
is,

Df (P ||Q) =

∫
p(x)f

(
q(x)

p(x)

)
dx (3)

The F-GAN objective that minimizes the f− divergence
(Df ) between Pθg and Pr is defined as

Vf = Ex∼Pr [D(x)]− Ex∼Pθg [f∗(D(x))] (4)

where f∗(x) = sup
t∈Dom(f)

{xt − f(t)} is the Fenchel-

conjugate of f . The classic GAN is a special case of F-GAN

when f(t) = t log(t)− (t+ 1) log

(
t+ 1

2

)
.

Wasserstein GAN (WGAN): WGAN formulates the GAN
game as a minimization of the optimal transport cost, the
Wasserstein distance, between Pr and Pθg , a more efficient
cost function to learn data distributions having support on
low dimensional manifolds (Arjovsky et al., 2017). Specifi-
cally, the Kantorovich-Rubinstein duality is used to arrive at
the Wasserstein-1 (Earth Movers) distance between the dis-
tributions defined as: sup

||D||L≤1

Ex∼Pr [D(x)]−Ex∼Pθg [D(x)],

where the supremum is over all 1-Lipschitz discriminators.
In practice, the Lipschitz constraint is enforced through
weight clipping resulting in the following WGAN objective:

Vw1
= Ex∼Pr [D(x)]− Ex∼Pθg [D(x)] (5)

The WGAN formulation is also extended to a general trans-
port cost (Farnia & Tse, 2018) c(x, y) by constraining the
discriminators to be c-concave as

Vw = Ex∼Pr [D(x)]− Ex∼Pθg [Dc(x)], (6)

where Dc is the c-transform of the discriminator D, i.e.,

Dc(x) = sup
y
{D(y)− c(x,y)} (7)

and the Wasserstein distance between Pθg and Pr is :

Wc(Pθg ||Pr) = sup
D−c−concave

Ex∼Pr [D(x)]−Ex∼Pθg [Dc(x)]

(8)
Despite the added stability of Wasserstein distance over
other divergences, training GANs remains an arduous task.
This has motivated efforts towards understanding the nature
of GAN convergence.

3.2. Understanding GAN convergence

Classical Notion of GAN Equilibrium

Traditionally, the GAN game was expected to converge to
a pure Nash equilibrium, a configuration (θ∗d, θ

∗
g) that is

optimal for both the players i.e.

max
θd

V (Dθd , Gθ∗g ) = min
θg

V (Dθ∗d , Gθg ) = V (Dθ∗d , Gθ∗g )

A GAN having unbounded capacity learns the true data
distribution at such a solution (Goodfellow et al., 2014).
However, a pure Nash equilibrium need not always exist for
a zero sum game (Nash, 1950). Only an extended notion -
the mixed strategy Nash equilibrium (MNE) is guaranteed
to exist. Recent GAN formulations explicitly seek the MNE
(Arora et al., 2017; Hsieh et al., 2019). As a mixed strategy
gives a distribution over the model parameters, the stationary
point to which the GAN converges need not be individually
optimal for both the players.

GANs Need Not Converge to Nash Equilibria

GAN convergence has also been well studied from an
optimization perspective using the notion of stability
(Daskalakis et al., 2017; Fiez et al., 2019; Nouiehed et al.,
2019; Zhang et al., 2019b; Mazumdar et al., 2019; Mokhtari
et al., 2020; Lin et al., 2020). As GAN formulations are
non-convex, only local surrogates of equilibria may be at-
tainable while employing gradient based optimization. A
(differential) local Nash equilibrium (LNE) (θ∗d, θ

∗
g) satis-

fies two properties: 1)∇θdV (θ∗d, θ
∗
g) = ∇θgV (θ∗d, θ

∗
g) = 0
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and 2) ∇2
θd
V (θ∗d, θ

∗
g) ≺ 0 , ∇2

θg
V (θ∗d, θ

∗
g) � 0. However,

recent literature (Mazumdar & Ratliff, 2018; Adolphs et al.,
2019) suggests the existence of many stable attractors that
are not LNE for the alternate gradient descent optimization,
nor produce realistic data and proposes methods to escape
these attractors. (Fiez et al., 2019; Jin et al., 2020) study
the gradient dynamics of sequential games and establish
that their only stable attractors are Stackelberg equilibria.
However, the relationship between the learned data distribu-
tion and the game configuration has not been well studied.
Further, recent empirical studies (Berard et al., 2019; Farnia
& Ozdaglar, 2020) also suggest that GANs need not attain
an LNE to produce realistic data.
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Figure 2. The high fidelity images outputted by a converged GAN
deteriorates on optimizing only w.r.t the generator while attaining
a lower loss (left), indicating that the GAN has not converged
to a Nash equilibrium; confirmed by the positive and negative
eigenvalues of the Hessian (right).

We verify the above hypothesis by training a spectral nor-
malized GAN (SNGAN) on the CIFAR-10 dataset for 100
epochs ensuring that the models have converged producing
high fidelity samples. As a local Nash equilibrium is locally
optimal for the agents, optimizing the objective function
w.r.t any individual player should not facilitate departure of
the player from such a point. However, as demonstrated in
Figure 2, the generator deviates from the attained equilib-
rium on further optimizing the objective function w.r.t only
the generator. While the generator attains lower cost, there
is a clear deterioration in the generated samples’ quality.
This implies that the GAN has not converged to a LNE. We
further strengthen the claim by verifying the top-K eigenval-
ues (λK ) (by magnitude) of the Hessian of the objective w.r.t
the generator’s parameters. However, as shown in Figure
2, the Hessian has both positive as well as negative eigen
values violating the second property of an LNE, thus empha-
sizing that GANs can converge to non-Nash attractors, all
the while producing high fidelity samples. Similar results
on GANs trained for MNIST and CELEB-A datasets are

discussed in the supplementary material.

Proximal Equilibria for GANs

Majority of studies attempting to characterize the equilib-
ria for GANs assume unbounded capacity for the models
(realizable setting) (Goodfellow et al., 2014; Arora et al.,
2017; Hsieh et al., 2019). However, in practice, most GAN
architectures (Brock et al., 2019; Zhang et al., 2019a; Miy-
ato et al., 2018; Gulrajani et al., 2017; Arjovsky et al., 2017;
Radford et al., 2016) employ normalization and regulariza-
tion to achieve state of the art performance. A recent study
(Farnia & Ozdaglar, 2020) on GAN convergence under the
non-realizable setting proposes a more generic notion of
equilibira - the Proximal Equilibria (PE). This notion of
equilibira is derived from a sequential game-play perspec-
tive for a GAN, for which a Stackelberg equilibrium is
guaranteed to exist under mild continuity assumptions (Jin
et al., 2020; Fiez et al., 2019). Farnia and Ozdaglar define
a proximal operator over the original GAN objective, al-
lowing the discriminator to be optimal in a neighbourhood
(controlled by λ),

V λ(Dθd , Gθg ) = max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− λ||Dθ̃d

−Dθd ||2

(9)

A proximal equilibrium is defined as the Nash equilibrium
for the objective V λ, which is guaranteed to exist (Farnia &
Ozdaglar, 2020). Formally, a configuration (θ∗d, θ

∗
g) of the

GAN game (Eq 1) is called a λ−proximal equilibrium if
and only if ∀ θd, θg ,

V (Dθd , Gθ∗g ) ≤ V (Dθ∗d , Gθ∗g )

≤ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− λ||Dθ̃d

−Dθ∗d ||
2

(10)
As the extreme cases λ→∞(0) recreate a Nash (Stackel-
berg) equilibrium, the λ−proximal equilibrium explores the
spectrum of equilibria between the two and thus serves as a
generic notion for GAN convergence. (Farnia & Ozdaglar,
2020) also suggest proximal training to explicitly enforce
convergence to a proximal equilibrium. Our work, in con-
trast, is aimed towards evaluating GAN convergence and
quantifying its goodness, irrespective of how it was trained.

4. Proximal Duality Gap
We first define the classical duality gap (Grnarova et al.,
2019) for GANs before moving on to the proposed measure.
Definition 1. Consider the GAN game presented in Eq.1.
Then, for a configuration (θd, θg) of the game, the duality
gap (DG) is defined as :

DG(θd, θg) = max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− min

θ̃g∈ΘG

V (Dθd , Gθ̃g )

At a pure Nash equilibrium (θ∗d, θ
∗
g), DG(θ∗d, θ

∗
g) = 0.
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The DG has some interesting properties. First, it is lower
bounded by the JSD between Pr and Pθg . Second, as DG
is applicable to any GAN objective V (D,G) and does not
require pre-trained classifier nor labeled data, it is domain
agnostic and potentially better equipped to monitor GAN
training over other prevalent evaluation measures. However,
as discussed previously, GANs can converge to non Nash
attractors, where Pr and Pθg are aligned well. The DG at
such equilibrium is not very well understood, limiting its
practicality for monitoring GAN training.

We extend the notion of Duality Gap to the general con-
text of training GANs where Nash equilibria need not be
attainable, utilizing the proximal operator. We define the
Proximal Duality Gap (DGλ) as below.

Definition 2. The proximal duality gap (DGλ) at (θd, θg)
for the GAN game presented in Eq.1 is defined as

DGλ(θd, θg) = VDw(θg)− V λGw(θd), where

VDw(θg) = max
θ
′
d∈ΘD

V (Dθ
′
d
, Gθg )

V λGw(θd) = min
θ′g∈ΘG

V λ(Dθd , Gθ′g )

The terms Dw( or Gw) indicate the worst adversary that
the generator (or discriminator) might face. Note that
maxθ′d∈ΘD

V λ(Dθ
′
d
, Gθg ) = maxθ′d∈ΘD

V (Dθ
′
d
, Gθg ).

Thus, for a GAN configuration attained using V , the DGλ

measures the ability of the agents to deviate from it w.r.t the
proximal objective V λ.

Remark. For all proximal equilibria (θ∗d, θ
∗
g) of the GAN

game defined by Eq. 1, VDw(θ∗g) = V λGw(θ∗d) = V λ(θ∗d, θ
∗
g),

thus DGλ(θ∗d, θ
∗
g) = 0.

This remark directly follows from the definition of proximal
equilibria (Eq. 10). Thus DGλ tending to zero implies that
the GAN game has converged to a proximal equilibrium.
However, as GANs are used for learning data distributions,
it is important that measures to quantify GAN convergence
should also give insights into the nature of the learned data
distribution. Thus, to establish the applicability ofDGλ, we
study how it relates to the divergence between the real and
generated data distributions for various GAN formulations.

4.1. Theoretical Analysis

The definition of DGλ has two terms - VDw and V λGw . We
first theoretically establish the relationship between VDw
and the divergences (DIV ) used in various GAN formula-
tions - the JS divergence (JSD(Pθg ||Pr)) for classical GAN
objective Vc, the Wasserstein distance (Wc(Pθg ||Pr)) for the
WGAN objective Vw, and the f−divergence (Df (Pθg ||Pr))
for the F-GAN objective Vf .

Lemma 1. Given a generator θg, VDw is related to the

divergences between Pr and Pθg in the various GAN objec-
tives as follows

VDw(θg) =





2JSD(Pθg ||Pr)− log 4, if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. Deferred to the supplementary material.

Thus, VDw(θg) measures the quality of the generatorGθg . If
θg is optimal such that Pθg covers the true data distribution
Pr, then VDw(θg) achieves the minimum value. In case of
a mismatch between Pθg and Pr, either due to insufficient
support or poor sample quality, VDw(θg) will increase, thus
making it a potentially useful metric in itself to monitor
GAN training. However, VDw does not incorporate the abil-
ity of the discriminator to deviate from the current game
configuration. Thus, it cannot identify if the game has con-
verged to an equilibrium. Further, as the minimum value
for VDw will vary depending upon the GAN formulation, it
cannot serve as a domain agnostic measure for monitoring
GAN training. DGλ, on the other hand will always tend
to zero on attaining a proximal equilibrium irrespective of
the GAN formulation. Thus, in the next result we analyze
the behavior of DGλ against the three GAN formulations.
Specifically, we show that the DGλ is positive and lower
bounded the divergence between Pθg and Pr.

Theorem 1. The proximal duality gap (DGλ) at a configu-
ration (θd, θg) for the GAN game defined by Vc, Vw, or Vf
is lower bounded by the JSD, Wasserstein distance, and f−
divergence between the real (Pr) and generated (Pθg ) data
distributions respectively. i.e.,

DGλ(θd, θg) ≥





JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. Deferred to the supplementary material.

This theorem non-trivially extends the prior result on the
bound of DG only for classic GAN (Grnarova et al., 2019).

4.2. Implications

As DGλ is lower bounded by the divergence between the
real and generated data distributions,DGλ → 0 not only im-
plies that the GAN has reached an equilibrium, but also that
generated distribution is close to the real data distribution.

Corollary. For GAN formulations defined by Vc, Vw or Vf ,
the generator learns the real data distribution at a proximal
equilibrium (θ∗d, θ

∗
g), as DGλ(θ∗d, θ

∗
g) = 0.
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This furthers the adeptness of proximal equilibria to serve as
a general optimality notion for GANs. As a proximal equi-
librium need not be a Nash equilibrium, it also facilitates
the following interesting observation
Remark. GANs can capture the real data distribution even
at non Nash game configurations.

Thus, the empirical observation (Berard et al., 2019) that
GANs can produce realistic data samples having high fi-
delity despite converging to a non-Nash attractor of the
gradient dynamics is theoretically justified.

On similar lines, a natural question that arises concerning
the behaviour of DGλ is whether proximal equilibria con-
stitute an exhaustive notion of equilibria at which GANs
can capture the real data distribution. Precisely, we ask the
question: Does GAN converging to a solution such that
Pθg → Pr =⇒ DGλ → 0? Our answer begins with the
following proposition concerning the extreme case forDGλ

as λ→ 0.
Theorem 2. The proximal duality gap (DGλ) at a configu-
ration (θ∗d, θ

∗
g) for the GAN game defined by Vc, Vw, or Vf is

equal to zero for λ = 0, when the generator learns the real
data distribution; Pθ∗g = Pr =⇒ DGλ=0(θ∗d, θ

∗
g) = 0.

Proof. Deferred to the supplementary material.

Corollary. For the GAN formulations defined by Vc, Vw
or Vf , the generator learns the real data distribution at a
configuration (θ∗d, θ

∗
g) if and only if (θ∗d, θ

∗
g) constitutes a

Stackelberg equilibrium.

Proof. Deferred to the supplementary material.

Thus DGλ=0(θd, θg)→ 0 whenever Pθg → Pr. The value
of λ restricts the discriminator in the proximal objective
(V λ) to be optimal within a neighbourhood. As λ → 0,
V λ considers the optimal discriminator over the entire pa-
rameter space (ΘD). Thus DGλ=0(θd, θg) = 0 implies
that (θd, θg) is a Stackelberg equilibrium. As all proximal
equilibria form a subset of Stackelberg equilibria, DGλ=0

would thus be an ideal choice to monitor GAN convergence.
However, as λ decreases, the complexity of computing
V λ increases rapidly and becomes infeasible as λ → 0.
Hence, it is only practical to check if a GAN configuration
is a λ(> 0)−proximal equilibrium. But can DGλ, for a
fixed value of λ(> 0) monitor convergence of GANs to
all λ

′−proximal equilibria? To address this question, let
us study the two cases - (i) λ

′ ≥ λ and (ii) λ
′
< λ sepa-

rately. The following theorem addresses case (i) utilizing
the hierarchical property of proximal equilibria.
Theorem 3. Consider a GAN configuration (θd, θg). Then,
∀λ′ ≥ λ0,

DGλ=λ
′
(θd, θg) = 0 =⇒ DGλ=λ0(θd, θg) = 0

Proof. Deferred to Supplementary material

DGλ
′
(θd, θg) = 0 is a sufficient condition for (θd, θg) being

a λ
′−proximal equilibrium. Thus, it follows from theorem

3 that DGλ is adept to monitor convergence of GANs to
all λ

′
(≥ λ)−proximal equilibria. However, when a GAN

converges to a λ
′
(< λ)−proximal equilibrium,DGλ can be

prone to error. The following theorem addresses this issue
by upper bounding the difference between DGλ and the
divergence between real and generated data distributions.

Theorem 4. Consider a GAN game governed by an ob-
jective function V . For λ > 0, let V λ denote the proxi-
mal objective defined by V λ(θd, θg) = maxθ̃dV (θ̃d, θg)−
λ||Dθ̃d

− Dθd ||2 . Then, ∀ ε > 0, ∃ δ > 0 such that if
||Dθd−Dθ̃d

|| < δ, thenDGλ(θd, θg)−DIV (Pθg ||Pr) < ε
where,

DIV (Pθg ||Pr) =





JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. Deferred to Supplementary material

Corollary. For a GAN configuration (θ∗d, θ
∗
g) such that

Pθ∗g = Pr, DG
λ(θ∗d, θ

∗
g) < ε

Thus even when the GAN converges to a λ
′
(< λ)−proximal

equilibrium, the error that DGλ can incur is bounded. Pre-
viously, the absence of such an upper bound as implied by
theorem 4 for DG, meant that DG need not necessarily
be close to zero when Pθg is close to Pr. DGλ however,
rules out this possibility and is thus a theoretically grounded
and robust measure that can serve as a tool for monitoring
convergence of GANs in the wild.

4.3. Estimating Proximal Duality Gap

Computing the true DGλ for a GAN configuration is a hard
task as it involves finding the optima of non convex func-
tions. We approximate DGλ by employing gradient descent
to estimate VDw and V λGw . For a GAN game governed by
V , estimating VDw involves optimizing V (θd, θg) w.r.t θd
using gradient descent. However, estimating V λGw requires
gradient computation over the proximal operator. As shown
in (Farnia & Ozdaglar, 2020), for a GAN objective func-
tion V that is smooth w.r.t θd, the gradient of the proximal
objective (V λ) w.r.t θg can be obtained in terms of V as
: ∇θgV λ(Dθd , Gθg ) = ∇θgV (Dθ∗d , Gθg ), where θ∗d rep-
resents the optimal discriminator implied by the proximal
objective. Thus, to estimate V λGw , at every iteration we use
gradient descent to obtain θ∗d for the corresponding θg and
update θg to minimize V (θ∗d, θg). The algorithm for the
overall estimation process and the associated computational
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Figure 3. Monitoring Convergence of WGAN (Top Row) and SNGAN (Bottom Row) over the datasets MNIST (Col 1), CIFAR-10 (Col
2) and CELEB-A (Col 3) using duality gap. DG is not reflective of the GAN convergence. DGλ, on the other hand is indicative of
convergence and saturates close to zero. The shaded region indicates the standard deviation over 5 independent trials.

complexity are discussed in the supplementary material. To
ensure that we obtain an unbiased estimate for DGλ, fol-
lowing (Grnarova et al., 2019), we split the dataset into 3
disjoint sets - SA, SB and SC . We train the GAN using
SA, we use SB to find the worst case counter parts Dw and
Gw via gradient descent, and SC to evaluate the objective
function at the obtained worst case configurations.

5. Experimentation
To experimentally establish the proficiency of DGλ, we
consider a WGAN with weight-clipping (that optimizes Vw)
(Arjovsky et al., 2017) and a Spectral Normalized GAN
(SNGAN) (that optimizes Vc) (Miyato et al., 2018) over 3
datasets - MNIST (Deng, 2012), CIFAR-10 (Krizhevsky
et al., 2014) and CELEB-A (Liu et al., 2015). For all the
experiments, we use the 4-layer DCGAN (Radford et al.,
2016) architecture for both the generator and the discrimina-
tor networks, and an Adam optimizer (Kingma & Ba, 2015)
to train the models. To compute DGλ, we use λ=0.1 and 20
optimization steps for approximating the proximal objective.
We used the torchgan framework (Pal & Das, 2019) to train
and evaluate all GAN models. Further implementation de-
tails for each experiment are provided in the supplementary

Pearson Correlation Coefficient (r)
rDG,IS rDGλ,IS rDG,FID rDGλ,FID

MNIST −0.752 −0.892 0.845 0.957
CIFAR-10 −0.368 −0.854 0.213 0.738
CELEB-A −0.213 −0.524 0.263 0.699

Table 1. Comparing the correlation of DG and DGλ with IS and
FID computed during the training of WGAN over the 3 datasets.

material and the source code is publicly available 1.

Monitoring GAN training using DGλ

Our first experiment aims to establish that DGλ is better
equipped over DG to monitor GAN convergence in prac-
tice. To this end, we train a WGAN and SNGAN over the 3
datasets till the models have converged. We compute DG
and DGλ throughout the training process, in addition to
the (image) domain specific evaluation measures - IS and
FID. Figure 3 demonstrates the training progress of each
GAN, qualitatively through visualization of samples from

1https://github.com/proximal-dg/proximal_
dg
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the learned data distribution and quantitatively in terms of
DG and DGλ. The high fidelity of the learned data sam-
ples indicates that the models have converged. However,
DG is not reflective of the training progress. This suggests
that the GANs have not attained a Nash equilibrium - the
behaviour of DG at non-Nash critical points is not well
understood. DGλ, on the other hand, captures the trend
in the training progress, and eventually saturates close to
zero. Thus, it is able to better characterize convergence. We
also quantitatively validate the above observation by exam-
ining the correlation between DG and DGλ against popular
measures - IS and FID that quantify the quality of Pθg . As
shown in Table 1, DGλ has a higher positive correlation
with FID and a higher negative correlation with IS as com-
pared to DG. The duality gap is negatively correlated with
IS because the latter increases as the GAN learns the real
data distribution, whereas the former decreases. A larger
(or smaller) IS (or FID) implies better fidelity of the learned
data distribution. The higher correlation of DGλ with IS
and FID over the training process thus validates that DGλ

is adept to monitor not only the convergence of GANs to an
equilibrium but also the goodness of Pθg .

Visualizing the effect of λ
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Figure 4. The behaviour of DGλ for increasing λ

λ is a critical hyperparameter that determines the proficiency
of DGλ. We observed from the theoretical analysis that,
while DGλ is adept to monitor convergence of GANs to
all λ

′
(≥ λ)-proximal equilibria, it is prone to error as λ

increases. As λ → ∞, DGλ becomes equivalent to DG.
We thus experimentally study the behaviour of DGλ for
increasing values of λ. We compute DGλ at the converged
WGAN configurations (as shown in Fig 3) for each of the
three datasets by varying λ in the range [10−2, 106]. We ob-
serve (Figure 4) that for all the datasets, DGλ remains close
to zero and unaffected for λ in range [10−2, 1]. Interestingly,
for the MNIST dataset, DGλ remains unaffected even for
larger values of λ(≈ 104). This suggests that the WGAN
configuration for MNIST is closer to a Nash equilibrium,
also explaining why DG and DGλ are closer for the same
in Figure 3. As λ crosses a threshold (101 for CELEB-A,
CIFAR-10 and 104 for MNIST),DGλ increases sharply and
behaves similar to DG. Thus, for a small value for λ (< 1)

DGλ is a robust tool for monitoring GAN convergence.

Influencing GAN training using DGλ
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Figure 5. Tuning GAN Hyperparameter using DGλ

A quantitative measure to monitor GAN training would en-
able easier tuning of hyperparameters. In this section, we
explore DGλ as an effective tool for influencing GAN train-
ing. A decisive hyperparameter that governs the delicate
balance of the GAN game and hence its convergence is the
update ratio of the agents. Let us denote by N , the num-
ber of discriminator updates per generator update, where a
negative value for N indicates a larger number of genera-
tor updates. We train WGAN over the MNIST dataset by
performing a grid search over N in the range −10 to 10 and
computing DGλ. Figure 5 depicts the qualitative output
at the end of 20 epochs and DGλ across training for each
value of N . We observe that as N increases, the quality
of the generated data samples diminishes and the learned
data distribution eventually diverges as N → 10. Corre-
spondingly, we observe that DGλ is close to zero for lower
values of N (colored blue) and increases with N (colored
red), suggesting that the GAN diverges for larger values
of N . DGλ thus enables us to quantitatively identify the
optimal range of values for the hyperparameters of a GAN.

6. Summary and Future Work
GANs have pushed the boundaries of learning complex data
distributions. However, the non-intuitive nature of GAN loss
curves makes training a challenging task. We propose Prox-
imal Duality Gap (DGλ) as a generic and quantitative tool
to monitor GAN training and understand GAN convergence.
DGλ characterizes GAN convergence as the game attain-
ing a λ−proximal equilibrium. It also helps derive insights
into the nature of GAN convergence - a GAN learns the
real data distribution if and only if it attains a Stackelberg
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equilibrium. The ability of DGλ to objectively quantify
GAN convergence makes it a useful measure to tune the
hyperparameters of a GAN. A couple of open questions that
can improve the utility of DGλ, if addressed, include identi-
fying an optimal λ and making the range of values for DGλ

invariant across GAN formulations. The characterization of
GAN convergence through proximal duality gap opens up
new avenues for effortless GAN training.
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Supplementary Material

This document presents a detailed discussion on the theo-
rems, proofs, experimental observations and setup left out
in the main paper due to space constraints.

1. Background
1.1. Preliminaries and Notations

Consider the GAN game defined by :

min
θg∈ΘG

max
θd∈ΘD

V (Dθd , Gθg ), (1)

where the generator (G, parametrized by θg) and discrim-
inator (D, parametrized by θd) are neural networks and V
is the objective function that the agents seek to optimize.
Let us denote by Pr the real data distribution and by Pθg
the generated data distribution. We consider three different
GAN formulations, each expressing the objective function
(V ) as summarized below:

Classic GAN, defined by:

Vc = Ex∼Pr [logD(x)] + Ex∼Pθg [log(1−D(x))] (2)

F-GAN, defined by:

Vf = Ex∼Pr [D(x)]− Ex∼Pθg [f
∗(D(x))], (3)

where f∗ denotes the Fenchel conjugate of a convex lower
semi-continuous function f satisfying f(1) = 0.

WGAN, defined by:

Vw = Ex∼Pr [D(x)]− Ex∼Pθg [D
c(x)], (4)

where Dc denotes the c−transform of D.

We denote by DIV (Pθg ||Pr) the divergence between the
real and generated data distributions, defined for the three
GAN formulations as below:

DIV (Pθg ||Pr) =





JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

where JSD, Wc and Df denotes the Jenson-Shannon Di-
vergence, Wasserstein Distance (associated with a transport
cost c) and f−divergence respectively. To theoretically
study the properties of DGλ, we assume that the real data
distribution is learnable. i.e. minPθg DIV (Pθg ||Pr) = 0.

1.2. GANs Need Not Converge to Nash Equilibrium

In this section, we provide further empirical evidence for
the claim that GANs can produce realistic data even at non-
Nash critical points. Section 3.2 of the main paper pre-
sented results for an SNGAN trained over the CIFAR-10
dataset. Figure 1 demonstrates similar results for SNGAN
over the MNIST and CELEB-A datasets. We observe that
the converged GAN configurations do not exhibit the char-
acteristics of a Nash equilibrium, despite producing high
fidelity samples. A Nash equilibrium is optimal for both
the agents, thus no agent can deviate from it to unilat-
erally improve its payoff. As the generator (discrimina-
tor) aims to minimize (maximize) the objective function,
a Nash equilibrium would constitute a local minima (max-
ima) for the generator (discriminator). The hessian of the
objective function w.r.t the generator (discriminator) would
thus be positive (negative) definite. However, as depicted
in Figure 1, the hessian of the objective function w.r.t the
generator is indefinite as it has both positive as well as neg-
ative eigenvalues, indicating that the configuration is not a
local minima for the generator and thus not a Nash equi-
librium. This is also verified by the visualization (Figure
1 that the generator is able to deviate from the converged
configuration on unilaterally optimizing the objective func-
tion, attaining a lower loss, but deteriorating the quality of
the learned data distribution.

2. Theorems and Proofs
2.1. Classical Duality Gap

Proposition 1. The duality gap (DG) for a GAN configu-
ration will tend to zero only at a Nash equilibrium and is
positive otherwise.

Proof. A configuration (θ∗d, θ
∗
g) of the GAN game (Eq 1) is

called a Nash equilibrium if and only if ∀ θd, θg ,

V (Dθd , Gθ∗g ) ≤ V (Dθ∗d , Gθ∗g ) ≤ V (Dθ∗d , Gθg )

Equivalently, max
θ̃d∈ΘD

V (Dθ̃d
, Gθ∗g ) = min

θ̃g∈ΘG

V (Dθ∗d , Gθ̃g )

We have from the definition of duality gap (DG),

DG(θd, θg) = max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− min

θ̃g∈ΘG

V (Dθd , Gθ̃g )

ar
X

iv
:2

10
5.

04
80

1v
1 

 [
cs

.L
G

] 
 1

1 
M

ay
 2

02
1



Supplementary Material: Characterizing GAN Convergence Through Proximal Duality Gap

0 20 40
( K)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

K

(a) SNGAN trained on MNIST

100 0 100 200
( K)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

K

(b) SNGAN trained on CELEB-A

Figure 1. The high fidelity images outputted by a converged GAN deteriorates on optimizing only w.r.t the generator while attaining
a lower loss, indicating that the GAN has not converged to a Nash equilibrium; confirmed by the presence of positive and negative
eigenvalues in the Hessian.

Thus, when DG(θd, θg) = 0

=⇒ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg ) = min

θ̃g∈ΘG

V (Dθd , Gθ̃g )

=⇒ (θd, θg) is a Nash equilibrium.

Similarly, when (θd, θg) is a Nash equilibrium,

=⇒ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg ) = min

θ̃g∈ΘG

V (Dθd , Gθ̃g )

=⇒ DG(θd, θg) = 0

When (θd, θg) does not constitute a Nash equilibrium,

=⇒ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg ) > min

θ̃g∈ΘG

V (Dθd , Gθ̃g )

=⇒ DG(θd, θg) > 0

However, as discussed, GANs can converge to non-Nash
critical points while producing data samples of high fi-
delity. The behaviour of DG at such scenarios is not well
understood, limiting its applicability as a tool for monitor-
ing GAN training.

2.2. Proximal Duality Gap

Proposition 2. Consider a GAN game governed by the ob-
jective function V . Then, for a configuration (θd, θg) the
proximal objective V λ is related to V as :

V λ(θd, θg) ≤ VDw(θg)

Proof. Since λ||Dθ̃d
−Dθd ||2 ≥ 0, we have

V (Dθ̃d
, Gθg )− λ||Dθd −Dθ̃d

||2 ≤ V (Dθ̃d
, Gθg )

=⇒ V λ(θd, θg) ≤ max
θ̃d

V (Dθ̃d
, Gθg )

= VDw(θg)

Lemma 1. Given a generator θg , VDw is related to the
divergences between Pr and Pθg in the various GAN ob-
jectives as follows

VDw(θg) =





2JSD(Pθg ||Pr)− log 4, if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. We divide the proof into three parts corresponding
to each of the three GAN formulations.

Part 1. Classic GAN
Consider the classic GAN objective V = Vc. We have,

V = Ex∼Pr [logD(x)] + Ex∼Pθg [log(1−D(x))]

=

∫
Pr(x) logD(x)dx+

∫
Pθg (x) log(1−D(x))dx

We have VDw = max
D

V . The worst case discriminator Dw

can be obtained by differentiating V w.r.tD for every x and
equating to zero. This gives:

Dw(x) =
Pr(x)

Pθg (x) + Pr(x)

Substituting Dw back into V gives,

VDw =

∫
Pr(x) log

(
Pr

Pr + Pθg

)
dx

+

∫
Pθg (x) log

(
Pθg

Pr + Pθg

)
dx

= 2JSD(Pθg ||Pr)− log 4

Part 2. Wasserstein GAN
Consider the Wasserstein GAN objective V = Vw. We
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have,

V = Ex∼Pr [D(x)]− Ex∼Pθg [D
c(x)]

where, Dc(x) is related to D(x) as

Dc(x) = sup
x′
{ D(x′)− c(x, x′) }

≥ D(x)− c(x, x)
≥ D(x)

Substituting for Dc(x) into V , we have

V ≤ Ex∼Pr [D(x)]− Ex∼Pθg [D(x)]

Thus, if ∃ a c−concave function Dw such that Dw(x) =
Dc
w(x), then the bound is attainable and we have,

VDw = max
D c−concave

V = sup
D c−concave

V

= Ex∼Pr [Dw(x)]− Ex∼Pθg [Dw(x)]

Consider a constant discriminatorDconstant(x) = k, which
by definition satisfies c−concavity. We have,

Dc
constant(x) = sup

x′
{ Dconstant(x

′)− c(x, x′) }

= sup
x′
{ k − c(x, x′) }

= k + sup
x′
{ −c(x, x′) }

= k = Dconstant(x)

Thus, for Dw = Dconstant the bound is attainable and we
have,

VDw = max
D c−concave

V

= sup
D c−concave

Ex∼Pr [D(x)]− Ex∼Pθg [D
c(x)]

=Wc(Pθg ||Pr)

Part 3. F-GAN
Consider the F-GAN objective V = Vf . We have,

V = Ex∼Pr [D(x)]− Ex∼Pθg [f
∗(D(x))],

where f∗ is the Fenchel conjugate of a convex function f
defined by f∗(x) = max

t
{ xt − f(t) } . The maximum

implied by f∗ can be obtained by differentiating it w.r.t t
and equating to zero. This gives

x− f ′(t) = 0

=⇒ x = f ′(t)

On Substituting the value of x in f∗(x), we get that f∗

satisfies the property

f∗(f ′(t)) = tf ′(t)− f(t) (5)

We have VDw = max
D

V . The worst case discriminator Dw

can be obtained by differentiating V w.r.tD for every x and
equating to zero. This gives:

Dw(x) = f∗
′−1

(
Pr(x)

Pθg (x)

)

Substituting Dw back into V we get,

VDw =

∫
Pr(x)f

∗′−1

(
Pr(x)

Pθg (x)

)
dx

−
∫
Pθg (x)f

∗
(
f∗
′−1

(
Pr(x)

Pθg (x)

))
dx

The Fenchel conjugate f∗ of a convex function f satisfies
f∗
′−1 = f ′. Thus, substituting for f∗

′−1 in VDw , we get,

VDw =

∫
Pr(x)f

′
(
Pr(x)

Pθg (x)

)
dx

−
∫
Pθg (x)f

∗
(
f
′
(
Pr(x)

Pθg (x)

))
dx

=

∫
Pr(x)f

′
(
Pr(x)

Pθg (x)

)
dx

−
∫
Pθg (x)

(
Pr(x)

Pθg (x)
f
′
(
Pr(x)

Pθg (x)

))
dx

+

∫
Pθg (x)

(
f

(
Pr(x)

Pθg (x)

))
dx (using 5)

=

∫
Pθg (x)f

(
Pr(x)

Pθg (x)

)
dx

= Df (Pθg ||Pr)

Theorem 1. The proximal duality gap (DGλ) at a config-
uration (θd, θg) for the GAN game defined by Vc, Vw, or Vf
is lower bounded by the JSD, Wasserstein distance, and f−
divergence between the real (Pr) and generated (Pθg ) data
distributions respectively. i.e.,

DGλ(θd, θg) ≥





JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. We divide the proof into three parts corresponding
to each of the the three GAN formulations.

Part 1. Classic GAN,
Consider the classic GAN objective V = Vc. We have,
VDw(θg) = 2JSD(Pθg ||Pr)− log 4 (lemma 1)

Further, V λ(θd, θg) ≤ VDw(θg) (proposition 2)
=⇒ V λ(θd, θg) ≤ 2JSD(Pθg ||Pr)− log 4
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Thus, using a slight misuse of notation, we have

V λGw(θd) = min
θ′g

V λ(θd, θ
′
g)

≤ min
P
θ
′
g

2JSD(Pθ′g ||Pr)− log 4

= − log 4

∴ DGλ(θd, θg) = VDw(θg)− V λGw(θd)
≥ JSD(Pθg ||Pr)

Part 2. Wasserstein GAN,
Consider the Wasserstein GAN objective V = Vw. We
have, VDw(θg) =Wc(Pθg ||Pr) (lemma 1)

Further, V λ(θd, θg) ≤ VDw(θg) (proposition 2)
=⇒ V λ(θd, θg) ≤Wc(Pθg ||Pr)
Thus, using a slight misuse of notation, we have

V λGw(θd) = min
θ′g

V λ(θd, θ
′
g)

≤ min
P
θ
′
g

Wc(Pθ′g ||Pr)

= 0

∴ DGλ(θd, θg) = VDw(θg)− V λGw(θd)
≥Wc(Pθg ||Pr)

Part 3. F-GAN,
Consider the F-GAN objective V = Vf . We have,
VDw(θg) = Df (Pθg ||Pr) (lemma 1)

Further, V λ(θd, θg) ≤ VDw(θg) (proposition 2)
=⇒ V λ(θd, θg) ≤ Df (Pθg ||Pr)
Thus, using a slight misuse of notation, we have

V λGw(θd) = min
θ′g

V λ(θd, θ
′
g)

≤ min
P
θ
′
g

Df (Pθ′g ||Pr)

= 0

∴ DGλ(θd, θg) = VDw(θg)− V λGw(θd)
≥ Df (Pθg ||Pr)

Theorem 2. The proximal duality gap (DGλ) at a con-
figuration (θ∗d, θ

∗
g) for the GAN game defined by Vc, Vw,

or Vf is equal to zero for λ = 0, when the generator
learns the real data distribution .i.e, Pθ∗g = Pr =⇒
DGλ=0(θ∗d, θ

∗
g) = 0.

Proof. Let (θ∗d, θ
∗
g) be a GAN configuration such that

Pθ∗g = Pr. We divide the proof into three parts correspond-
ing to each of the the three GAN formulations.

Part 1. Classic GAN,
Consider the classic GAN objective V = Vc. We have,

VDw(θ
∗
g) = 2JSD(Pθ∗g ||Pr)− log 4 (lemma 1)

= − log 4 (∵ Pθ∗g = Pr)

V λ=0
Gw (θ∗d) = min

θ′g

V λ=0(θ∗d, θ
′
g)

= min
P
θ
′
g

max
θ̃d

V (θ̃d, θ
′
g)

= min
P
θ
′
g

VDw(θ
′
g)

= min
P
θ
′
g

2JSD(Pθ′g ||Pr)− log 4

= − log 4

∴ DGλ=0(θ∗d, θ
∗
g) = VDw(θ

∗
g)− V λ=0

Gw (θ∗d)

= 0

Part 2. Wasserstein GAN,
Consider the Wasserstein GAN objective V = Vw. We
have,

VDw(θ
∗
g) =Wc(Pθ∗g ||Pr) (lemma 1)

= 0 (∵ Pθ∗g = Pr)

V λ=0
Gw (θ∗d) = min

θ′g

V λ=0(θ∗d, θ
′
g)

= min
P
θ
′
g

max
θ̃d

V (θ̃d, θ
′
g)

= min
P
θ
′
g

VDw(θ
′
g)

= min
P
θ
′
g

Wc(Pθ′g ||Pr)

= 0

∴ DGλ=0(θ∗d, θ
∗
g) = VDw(θ

∗
g)− V λ=0

Gw (θ∗d)

= 0

Part 3. F-GAN,
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Consider the F-GAN objective V = Vf . We have,

VDw(θ
∗
g) = Df (Pθ∗g ||Pr) (lemma 1)

= 0 (∵ Pθ∗g = Pr)

V λ=0
Gw (θ∗d) = min

θ′g

V λ=0(θ∗d, θ
′
g)

= min
P
θ
′
g

max
θ̃d

V (θ̃d, θ
′
g)

= min
P
θ
′
g

VDw(θ
′
g)

= min
P
θ
′
g

Df (Pθ′g ||Pr)

= 0

∴ DGλ=0(θ∗d, θ
∗
g) = VDw(θ

∗
g)− V λ=0

Gw (θ∗d)

= 0

Corollary. For the GAN formulations defined by Vc, Vw
or Vf , the generator learns the real data distribution at a
configuration (θ∗d, θ

∗
g) if and only if (θ∗d, θ

∗
g) constitutes a

Stackelberg equilibrium.

Proof. Consider a configuration (θ∗d, θ
∗
g) for the GAN game

defined by Vc, Vw or Vf . We have,

Part 1. When Pθ∗g = Pr,

Theorem 2 =⇒ DGλ=0(θ∗d, θ
∗
g) = 0

=⇒ (θ∗d, θ
∗
g) ∈ Stackelberg Equilibria

Part 2. When (θ∗d, θ
∗
g) ∈ Stackelberg Equilibria,

From the definition of DGλ and Stackelberg Equilibrium,

DGλ=0(θ∗d, θ
∗
g) = 0

=⇒ DIV (Pθ∗g ||Pr) ≤ 0 (Theorem 1)

=⇒ DIV (Pθ∗g ||Pr) = 0 (∵ DIV ≥ 0)

=⇒ Pθ∗g = Pr

Theorem 3. Consider a GAN configuration (θd, θg). Then,
∀λ′ ≥ λ0,

DGλ=λ
′
(θd, θg) = 0 =⇒ DGλ=λ0(θd, θg) = 0

Proof. We know from the definition of DGλ that
DGλ(θd, θg) = 0 is a necessary and sufficient condi-
tion for (θd, θg) to be a λ−proximal equilibrium i.e. ,

DGλ(θd, θg) = 0 implies that ∀ θ′d, θ
′
g ,

V (Dθ
′
d
, Gθg ) ≤ V (Dθd , Gθg )

≤ max
θ̃d∈ΘD

V (Dθ̃d
, Gθ′g )− λ||Dθ̃d

−Dθd ||2

and vice-versa.
Now, ∀λ′ ≥ λ0, the following holds

max
θ̃d∈ΘD

V (Dθ̃d
, Gθ′g )− λ

′ ||Dθ̃d
−Dθd ||2

≤ max
θ̃d∈ΘD

V (Dθ̃d
, Gθ′g )− λ0||Dθ̃d

−Dθd ||2

Thus, (θd, θg) is a λ
′−proximal equilibrium =⇒ (θd, θg)

is also a λ0−proximal equilibrium.
∴ DGλ=λ

′
(θd, θg) = 0 =⇒ DGλ=λ0(θd, θg) = 0

Theorem 4. Consider a GAN game governed by an ob-
jective function V . For λ > 0, let V λ denote the proxi-
mal objective defined by V λ(θd, θg) = maxθ̃dV (θ̃d, θg)−
λ||Dθ̃d

− Dθd ||2 . Then, ∀ ε > 0, ∃ δ > 0 such that if
||Dθd−Dθ̃d

|| < δ, thenDGλ(θd, θg)−DIV (Pθg ||Pr) < ε
where,

DIV (Pθg ||Pr) =





JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. We show that for all ε > 0 and λ > 0, δ =

√
ε

λ
satisfies the claim. We provide the proof for F-GAN. The
proof for the other GAN formulations follow on the same
lines.
Consider a configuration (θd, θg) for the GAN game de-
fined by the F-GAN objective V = Vf . We have,
VDw(θg) = Df (Pθg ||Pr) (lemma 1)
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Given that ||Dθd −Dθ̃d
|| < δ, we have

DGλ(θd, θg)−DIV (Pθg ||Pr)
= VDw(θg)− V λGw(θd)−Df (Pθg ||Pr)
= Df (Pθg ||Pr)− V λGw(θd)

−Df (Pθg ||Pr)
= −V λGw(θd)
= −min

θ′g

V λ(θd, θ
′
g)

= −min
θ′g

{max
θ̃d

V (θ̃d, θ
′
g)

− λ||Dθ̃d
−Dθd ||2}

< −min
θ′g

{max
θ̃d

V (θ̃d, θ
′
g)− λδ2}

= −min
θ′g

{VDw(θ
′
g)}+ λδ2

= −min
P
θ
′
g

{Df (Pθ′g ||Pr)}+ λδ2

= λδ2

= λ

(√
ε

λ

)2

= ε

3. DGλ Estimation

Algorithm 1: Proximal Duality Gap DGλ(θtd, θ
t
g)

Input: GAN configuration - (θtd, θtg), data points xi
function prox opt(θd, θg) :

θ̃d ←− θd
for j = 0 to T do

V λ ←− V (θ̃d, θg)− λ
n

∑n
i=1 ||∇xDθ̃d

(xi)−
∇xDθd(xi)||22
θ̃d ←− θ̃d + η∇θ̃dV

λ

end
return θ̃d, V λ

θwd ←− θtd ; θ
w
g ←− θtg

for i = 0 to N ITER do
θwd ←− θwd + η∇θwd V (θwd , θ

t
g)

θ∗d, V
λ ←−prox opt(θtd, θ

w
g )

θwg ←− θwg − η∇θwg V (θ∗d, θ
w
g )

end
VDw ←− V (θtg, θ

w
d )

θ∗d, V
λ
Gw
←− prox opt(θtd, θ

w
g )

return DGλ(θtd, θtg) = VDw − V λGw

Algorithm 1 summarizes the estimation process for prox-
imal duality gap. Given a configuration (θd, θg) of the
GAN, we estimate VDw and V λGw by optimizing the ob-
jective function w.r.t the individual agents using gradient
descent. We have the proximal objective defined by,

V λ(Dθd , Gθg ) = max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− λ||Dθ̃d

−Dθd ||2

Following (Farnia & Ozdaglar, 2020) we use the Sobolev
norm in V λ, given by

||D|| =
√

Ex∼Pr
[
||∇xD(x)||22

]

The estimation process for DGλ is similar to that of DG,
except that the worst case generator for a given discrimina-
tor is computed w.r.t the proximal objective (V λ). As de-
picted in Algorithm 1, the function prox opt uses gradient
ascent to estimate the proximal objective V λ. Since λ re-
stricts the neighbourhood within which the discriminator is
optimal in V λ, the search space for the optimal discrimina-
tor increases as λ decreases. Correspondingly, estimating
V λ demands a larger no. of gradient steps and becomes
computationally infeasible as λ→ 0.
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Figure 2. Computational Complexity of DGλ over DG

We thus experimentally studied the computational over-
head in estimating DGλ over DG. Figure 2 compares
the average time taken per epoch to estimate DG and
DGλ across varying gradient steps (T ) to approximate
V λ. We observe that while DGλ has comparable com-
putational complexity as DG for smaller values of T , it
increases rapidly for larger values of T . We observed that
for λ = 0.1, ≈ 20 steps were sufficient for V λ to converge
(in line with the observations of (Farnia & Ozdaglar, 2020)
), incurring computational expense (Figure 2) comparable
to that demanded by DG.
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Pearson Correlation Coefficient (r)

rDG,IS rDGλ,IS rDG,FID rDGλ,FID
MNIST -0.104 -0.516 0.207 0.942
CIFAR-10 -0.368 -0.463 0.293 0.661
CELEB-A -0.535 -0.846 0.638 0.929

Table 1. Comparing the correlation of DG and DGλ with IS and
FID computed during the training of SNGAN over the 3 datasets.

4. Experiments and Results
4.1. Monitoring GAN Training Using DGλ

In this section, we present further empirical observations
and evidence to demonstrate the proficiency of proximal
duality gap. Section 5.1 of the main paper presented the
adeptness of DGλ over DG to monitor GAN convergence,
suggesting that the GANs have attained a proximal equilib-
rium and not a Nash equilibrium. We thus studied the be-
haviour of the converged GAN while estimating DG and
DGλ. We visualized the variation in the generated data
distribution across epochs during the estimation of VGw
(for DG) and V λGw (for DGλ). The behaviours are demon-
strated in Figure 3 for SNGAN and Figure 4 for WGAN
across the three datasets - (a) MNIST, (b) CIFAR-10 and
(c) CELEB-A. The high fidelity of generated data samples
depicted in each subfigure suggest that the GANs have con-
verged. However, on optimizing the objective function (V )
unilaterally w.r.t the generator, it deviates (top row on the
right) and deteriorates the quality of the learned data dis-
tribution, validating that the GAN has not attained a Nash
equilibrium. However, the generator is unable to deviate
(bottom row on the right) from the converged configura-
tion w.r.t the proximal objective (V λ) as the generated data
distribution does not vary, indicating that the GANs have
attained a proximal equilibrium. This explains why DGλ

is able to better characterize convergence overDG for each
GAN.

Table 1 presents the correlation of DG and DGλ with the
popular quality evaluation measures IS and FID, across
the training process of an SNGAN over each of the three
datasets. We observe that DGλ has a higher correlation
over DG with each of the measures. Thus, further validat-
ing the claim that DGλ is adept to not only monitor con-
vergence of the GAN game to an equilibrium, but also the
goodness of the learned data distribution.

4.2. Implementation and Hyperparameter Details

We used the 4-layer DCGAN architecture for both the gen-
erator and the discriminator networks in all the experi-
ments. We used an Adam optimizer to train and evaluate
all the models. To compute DGλ, we used λ = 0.1 and

20 optimization steps for approximating the proximal ob-
jective. To enforce the Lipschitz constraint in WGAN, we
used weight clipping in the range [−0.01, 0.01]. We used
a batch size of 512, 512, 128 for MNIST, CIFAR-10 and
CELEB-A datasets respectively, where the input images
were resized to be of shape 32×32. The latent space dimen-
sion for the generator was set to 100. To ensure that we ob-
tain an unbiased estimate for DGλ and DG, we split each
dataset into 3 disjoint sets - SA, SB and SC . We trained the
GAN using SA, we used SB to find the worst case counter
parts Dw and Gw via gradient descent, and SC to evaluate
the objective function at the obtained worst case configura-
tions. For each dataset, we kept 5000 samples each in SB ,
SC and the rest in SA. To estimate the worst case configu-
rations, we optimized each agent unilarerally for 10 epochs
over SB . The learning rates for the discriminator (LRD)
and generator (LRG), the value in multiples of which the
DCGAN architecture steps up the convolutional features
(Step Channels) and the values of (β1, β2) used in the
Adam optimizer for each of the datasets are summarized in
Table 3 for WGAN and Table 2 for SNGAN.

SNGAN

LRD LRG
Step

Channels
β1 β2

MNIST 1e− 4 2e− 4 16 0.00 0.999
CIFAR-10 1e− 4 2e− 4 64 0.00 0.999
CELEB-A 1e− 4 2e− 4 64 0.00 0.999

Table 2. Hyperparameter values for SNGAN experiments.

WGAN

LRD LRG
Step

Channels
β1 β2

MNIST 4e− 4 1e− 4 16 0.50 0.999
CIFAR-10 4e− 4 1e− 4 64 0.50 0.999
CELEB-A 4e− 4 1e− 4 64 0.50 0.999

Table 3. Hyperparameter values for WGAN experiments.
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(a) MNIST

(b) CIFAR-10

(c) CELEB-A

Figure 3. Visualizing the behaviour the generator while estimating DG and DGλ for a converged Wasserstein GAN (WGAN) over
the datasets- (a) MNIST (b) CIFAR-10 (c) CELEB-A. The GAN has converged, validated by the high fidelity of generated data sam-
ples(left grid). However, the generator deviates on optimizing V , but remains stationary on optimizing V λ, indicating that the converged
configuration is a proximal equilibrium and not a Nash equilibrium.
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(a) MNIST

(b) CIFAR-10

(c) CELEB-A

Figure 4. Visualizing the behaviour the generator while estimating DG and DGλ for a converged Spectral Norrmalized GAN (SNGAN)
over the datasets- (a) MNIST (b) CIFAR-10 (c) CELEB-A. The GAN has converged, validated by the high fidelity of generated data
samples(left grid). However, the generator deviates on optimizing V , but remains stationary on optimizing V λ, indicating that the
converged configuration is a proximal equilibrium and not a Nash equilibrium.


